Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T06:31:56.118Z Has data issue: false hasContentIssue false

Mordell's finite basis theorem revisited

Published online by Cambridge University Press:  24 October 2008

J. W. S. Cassels
Affiliation:
D.P.M.M.S., 16 Mill Lane, Cambridge CB2 1SB

Extract

0. Mordell proved his ‘Finite Basis Theorem’ in the paper [31] ‘On the rational solutions of the indeterminate equations of the third and fourth degrees’ which appeared in 1922 in Volume 21 of these Proceedings. It had been assumed, rather than conjectured, by Poincaré some 20 years previously, but it was not what he had set out to prove. The theorem and its generalizations are at the heart of many of the most interesting achievements and problems of the theory of numbers and also of algebraic geometry. Mordell himself had virtually no part in these developments: his great work was to lie elsewhere ([5]).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Baker, A. and Coates, J.. Integer points on curves of genus 1. Proc. Cambridge Philos. Soc. 67 (1970), 595602.CrossRefGoogle Scholar
[2]Birch, B. J.. Heegner points of elliptic curves. Symposia Mathematica 15 (Academic Press 1975), 441445.Google Scholar
[3]Birch, B. J. and Swinnerton-Dyer, H. P. F.. Notes on elliptic curves II. J. Reins Angew. Math. 218 (1965), 79108.CrossRefGoogle Scholar
[4]Cassels, J. W. S.. Diophantine equations with special reference to elliptic curves. J. London Math. Soc. 41 (1966), 193291.CrossRefGoogle Scholar
Cassels, J. W. S.. Diophantine equations with special reference to elliptic curves. J. London Math. Soc. Crrigenda 42 (1967), 183.CrossRefGoogle Scholar
[5]Cassels, J. W. S.. Mordell, L. J.. Biog. Mem. Roy. Soc. 19 (1973), 493520.CrossRefGoogle Scholar
Cassels, J. W. S.. Bull. London Math. Soc. 6 (1974), 6996.CrossRefGoogle Scholar
[6]Cassels, J. W. S.. The Mordell–Weil group and curves of genus 2. Arithmetic and Geometry. Papers dedicated to I. R. Shafarevich on the occasion of his sixtieth birthday, I (Birkhäuser, 1983), 2960.Google Scholar
[7]Coates, J. and Wiles, A.. On the conjectures of Birch and Swinnerton-Dyer. Invent. Math. 39 (1977), 223251.CrossRefGoogle Scholar
[8]Dickson, L. E.. History of the Theory of Numbers. (3 vols.) Carnegie Institute of Washington Pub. 256, 1919 (Reprint: G. E. Steehert, New York, 1934).Google Scholar
[9]Faltings, G.. Endllichkeitssätze für abelsehe Varietäten über Zahlkörpern. Invent. Math. 73 (1983), 349366.CrossRefGoogle Scholar
[10]Grauert, H.. Mordells Vermutung über rationale Punkte auf algebraischen Kurven und Funktionenkörper. Inst. Hautes Études Sci. Publ. Math. 25 (1965), 131149.CrossRefGoogle Scholar
[11]Gross, B. and Zagier, D.. Points do Heegner et dérivées do fonctions L. C. R. Acad. Sci. Paris, Sér I. Math. 297 (1983), 8587.Google Scholar
[12]Heegner, K.. Diophantische Analysis und Modulfunktionen. Math. Z. 56 (1952), 227253.CrossRefGoogle Scholar
[13]Hilbert, D.. Gesammelte Abhandlungen (3 vols.) (Springer, Göttingen, 1932) (Reprint: Chelsea, New York, 1965).CrossRefGoogle Scholar
[14]Hilbert, D. and Hurwitz, A.. Über die diophantischen Gleichungen vom Geschlecht Null. Acta Math. 14 (18901891), 217224(= Hubert, Ges. Abh. II, 258–263; = Hurwitz, Math. Werke II, 116–121).CrossRefGoogle Scholar
[15]Hurwitz, A.. Über ternäre diophantische Gleichungen dritten Grades. Vierteljahrschrift d. Naturf. Ges. in Zürich 62 (1917), 207229 (= Math. Werke II, 446–468).Google Scholar
[16]Hurwitz, A.. Mathematische Werke. (2 vols) (Birkhäuser, Basel, Stuttgart, 1963).CrossRefGoogle Scholar
[17]Landau, E. and Ostrowski, A.. On the diophantine equation ay 2+by+c = dx n. Proc. London Math. Soc. (2) 19 (1920), 276280.Google Scholar
[18]Lang, S.. Diophantine Geometry (Interscience, 1962).Google Scholar
[19]Lang, S.. Fundamentals of Diophantine Geometry (Springer-Verlag, 1983).CrossRefGoogle Scholar
[20]Lang, S. and Néron, A.. Rational points of abelian varieties over function fields. Amer. J. Math. 81 (1959), 95118.CrossRefGoogle Scholar
[21]Lang, S. and Tate, J.. Principal homogeneous spaces over abelian varieties. Amer. J. Math. 80 (1958), 659684.CrossRefGoogle Scholar
[22]Levi, B., Saggio per una teoria aritmetica delle forme cubiche ternari. Atti B. Accad. Sc. Torino 41 (1906), 739764 and 43 (1908), 99–120; 413–434; 672–681.Google Scholar
[23]Levi, B.. Sull'equazione indeterminata del 3° ordine. Atti IV Congresso Mat., Roma 1909, II, 173–7. (Reprint: Kraus, Liechtenstein, 1967).Google Scholar
[24]Manin, Ju. I.. Rational points on algebraic curves over function fields (in Russian). Izv. Akad. Nauk SSSR Ser. Mat. 27 (1963), 13951440.Google Scholar
[25]Manin, Ju. I.. Cyclotomic fields and modular curves (in Russian). Uspekhi Mat. Nauk 26:6 (1971), 771.Google Scholar
[26]Mordell, L. J.. The diophantine equation y 2k = x 3. Proc. London Math. Soc. (2) 13 (1913), 6080.Google Scholar
[27]Mordell, L. J.. Indeterminate equations of the third and fourth degrees. Quart. J. Pure Appl. Math. 45 (1914), 170186.Google Scholar
[28]Mordell, L. J.. A statement by Fermat (Records of proceedings). Proc. London Math. Soc. (2) 18 (1919), v–vi.Google Scholar
[29]Mordell, L. J.. Three Lectures on Fermat's Last Theorem (Cambridge University Press, 1921) (Reprinted in: Two papers on number theory (ed. Neumann, O.), VEB Deutscher Verlag d. Wiss., 1973).Google Scholar
[30]Mordell, L. J.. Note on the integer solutions of the equation Ey 2 = Ax 3 + Bx 2 + Cx + D. Mess. Math. 51 (1922), 169171.Google Scholar
[31]Mordell, L. J.. On the rational solutions of the indeterminate equations of the third and fourth degrees. Proc. Cambridge Philos. Soc. 21 (1922), 179182.Google Scholar
[32]Mordell, L. J.. On the integer solutions of the equation ey 2 = ax 3 + bx 2 + cx + d. Proc. London Math. Soc. (2) 21 (1923), 415419.CrossRefGoogle Scholar
[33]Mordell, L. J.. Indeterminate equations of the third degree. Science Progress 18 (1923), 3955.Google Scholar
[34]Néron, A.. Problémes arithmétiques et géometriques rattachés a Ia notion de rang d'une courbe algébrique dans un corps. Bull. Soc. Math. France 80 (1952), 101166.CrossRefGoogle Scholar
[35]Newton, I.. Mathematical Papers (8 vols) (Cambridge University Press, 19671981).Google Scholar
[36]Noether, M.. Über Flächen, weiche Schaaren rationaler Curven besitzen. Math. Ann. 3 (1871), 161227.CrossRefGoogle Scholar
[37]Poincaré, H.. Sur les propriétés arithmétiques des courbes algébriques. J. math. pures appl. (5) 7 (1901), 161233. (= Oeuvres 5, 483550).Google Scholar
[38]Poincaré, H.. Oeuvres (10 vols.) (Gauthier-Villars, Paris, 1916).Google Scholar
[39]Šfarevič, I. R.. The group of principal homogeneous algebraic manifolds (in Russian). Dokl. Akad. Nauk SSSR 124 (1959), 4243.Google Scholar
[40]Samuel, P.. Compléments à un article de Hans Grauert sur la conjecture de Mordell. Inst. Hautes Études Sci. Publ. Math. 29 (1966), 5562.CrossRefGoogle Scholar
[41]Serre, J. -P.. Autour du théorème de Mordell-Weil (2 vols). (Publ. Math. de l'Université Pierre et Marie Curie, 1983).Google Scholar
[42] X[ = Siegel, C. L.]. The integer solutions of the equation y 2 = ax n + bx n–1 + … + k. J. London Math. Soc. 1(1926), 6668 (= Ges. Abh. I, 207–208).Google Scholar
[43]Siegel, C. L.. Über einige Anwendungen diophantischer Approximationen. Abh. Preuss. Akad. Wiss. 1929, Nr 1 (= Ges. Abh. I, 209–266).CrossRefGoogle Scholar
[44]Siegel, C. L.. Gesammelte Abhandlungen (4 vols) (Springer, 1966).CrossRefGoogle Scholar
[45]Skolem, Th.. Diophantische Gleichungen. Erg. Math. 54, 1938. (Reprint: Chelsea, New York, 1950).Google Scholar
[46]Tate, J.. WC groups over p-adic fields. Sém. Bourbaki 10(1957) no. 156 (13 pp.).Google Scholar
[47]Tate, J.. The arithmetic of elliptic curves. Invent. Math. 23 (1974), 179206.CrossRefGoogle Scholar
[48]Thue, A.. Om en generel i store hele tal uløsbar ligning. Kristiania Videns. Selsk. Skrifter. I Mat. Nat. Kl., 1908, no. 7 (= Selected Math. Pap., 219231).Google Scholar
[49]Thue, A.. Über Annäherungswerte algebraischer Zahien. J. Reine Angew. Math. 135 (1909), 284305 (= Selected Math. Pap., 232–253).CrossRefGoogle Scholar
[50]Thue, A.. Über die Unlösbarkeit der Gleichung ax 2 + bx + c = dy n in grossen ganzen Zahlen. Arch. math. og naturv., Kristiania 34 (1917) no. 16 (= Selected Math. Pap., 561564).Google Scholar
[51]Thue, A.. Selected Mathematical Papers (Universitetsforlaget. Oslo, Bergen, Tromsø, 1977).Google Scholar
[52]Weil, A.. L'arithmétique sur les courbes algébriques. Acta Math. 52 (1928), 281315 (= Coll. Papers I, 11–45).CrossRefGoogle Scholar
[53]Weil, A.. Sur un théorème de Mordell. Bull. Sci. Math. (2) 54 (1929), 182191 (= Coll. Papers I, 47–56).Google Scholar
[54]Weil, A.. Oeuvres scientifiques. Collected papers. (3 vols) (Springer, 1980).Google Scholar
[55]Weil, A.. Number Theory: An Approach Through History (Birkhäuser, 1983).Google Scholar