Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-23T23:12:13.803Z Has data issue: false hasContentIssue false

A Moufang loop's commutant

Published online by Cambridge University Press:  08 December 2011

STEPHEN M. GAGOLA III*
Affiliation:
Department of Mathematics, The University of Arizona, 617 N. Santa Rita Ave, Tucson, AZ 85721-0089, U.S.A. e-mail: sgagola@math.arizona.edu

Abstract

The commutant of a loop is the set of elements which commute with all of the elements in the loop. The commutant of a Moufang loop is a subloop, but it has been an open problem to classify the Moufang loops for which the commutant is normal. It was S. Doro [3] who conjectured that a Moufang loop, under certain conditions, has a normal commutant. We settle this conjecture here by proving that the commutant of any Moufang loop is always a normal subloop.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Bol, G.Gewebe und Gruppen. Math. Ann. 114 (1937), no. 1, 414431.CrossRefGoogle Scholar
[2]Bruck, R. H.A Survey of Binary Systems (Springer-Verlag, 1971).CrossRefGoogle Scholar
[3]Doro, S.Simple Moufang loops. Math. Proc. Camb. Phil. Soc. 83 (1978), no. 3, 377392.CrossRefGoogle Scholar
[4]Gagola, S. M. IIIThe development of Sylow p-subloops in finite Moufang loops. J. Algebra 322 (2009), no. 5, 15651574.CrossRefGoogle Scholar
[5]Gagola, S. M. IIIThe existence of Sylow 2-subloops in finite Moufang loops. J. Algebra 322 (2009), no. 4, 10291037.CrossRefGoogle Scholar
[6]Gagola, S. M. IIIThe number of Sylow p-subloops in finite Moufang loops. Comm. Algebra 38 (2010), no. 4, 14361448.CrossRefGoogle Scholar
[7]Gagola, S. M. III and Hall, J. I.Lagrange's theorem for Moufang loops. Acta Sci. Math. (Szeged) 71 (2005), 4564.Google Scholar
[8]Grishkov, A. and Zavarnitsine, A.Sylows theorem for Moufang loops. J. Algebra 321 (2009), no. 7, 18131825.CrossRefGoogle Scholar
[9]Grishkov, A. and Zavarnitsine, A.Lagrange's theorem for Moufang loops. Math. Proc. Camb. Phil. Soc. 139 (2005), no. 1, 4157.CrossRefGoogle Scholar
[10]Kepka, T. and Nĕmec, P.Commutative Moufang loops and distributive groupoids of small orders. Czechoslovak Math. J. 31 (106) (1981), no. 4, 633669.CrossRefGoogle Scholar
[11]Kinyon, M. and Phillips, J. D.Commutants of Bol loops of odd order. Proc. Amer. Math. Soc. 132 (2004), no. 3, 617619.CrossRefGoogle Scholar
[12]Moufang, R.Zur Struktur von Alternativ Körpern. Math. Ann. 110 (1935), 416430.CrossRefGoogle Scholar