No CrossRef data available.
Article contents
Multiplicatively badly approximable matrices up to logarithmic factors
Published online by Cambridge University Press: 17 May 2021
Abstract
Let \[||x||\] denote the distance from \[x \in \mathbb{R}\] to the nearest integer. In this paper, we prove a new existence and density result for matrices \[A \in {\mathbb{R}^{m \times n}}\] satisfying the inequality
where q ranges in \[{\mathbb{Z}^n}\] and Ai denote the rows of the matrix A. This result extends previous work of Moshchevitin both to arbitrary dimension and to the inhomogeneous setting. The estimates needed to apply Moshchevitin’s method to the case m > 2 are not currently available. We therefore develop a substantially different method, based on Cantor-like set constructions of Badziahin and Velani. Matrices with the above property also appear to have very small sums of reciprocals of fractional parts. This fact helps us to shed light on a question raised by Lê and Vaaler on such sums, thereby proving some new estimates in higher dimension.
MSC classification
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 172 , Issue 3 , May 2022 , pp. 685 - 703
- Copyright
- © The Author(s), 2021. Published by Cambridge University Press on behalf of Cambridge Philosophical Society