Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T06:50:47.234Z Has data issue: false hasContentIssue false

Multipliers on some sequence spaces

Published online by Cambridge University Press:  24 October 2008

J. C. Kurtz
Affiliation:
Michigan State University

Abstract

Let ω be the space of all (complex) sequences. If E, F are subspaces of ω and if A is any (infinite) normal matrix, we set

and

If A is the matrix of a sequence–sequence summability transform, Ā and  shall denote the series–sequence and series–series forms of the transform, respectively. The multiplier spaces M(c(Ā), c(Ā)), M(lp(Â), l1(Â)) and M(lp(Â), c(Ā)) are characterized (1 ≤ p < ∞). Partial results are given for the spaces M(c(Ā), lp(Â)) and M(lp(Â), lp(Â)).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Chow, H. C.Note on convergence and summability factors. J. London Math. Soc. 29 (1954), 459476.CrossRefGoogle Scholar
(2)Irwin, R. L.Absolute summability factors I. Tôhoku Math. J. 18 (1966), 247254.Google Scholar
(3)Halmos, P.A Hilbert spaee problem book (Van Nostrand, Princeton, 1967).Google Scholar
(4)Jurkat, W. and Peyerimhoff, A.Mittelwertsätze bei Matrix – und Integraltransforma tionen. Math. Zeit. 55 (1952), 92108.Google Scholar
(5)Kuatz, J. C.Hardy–Bohr theorems. Tóhoku Math. J. 18 (1966), 237246.Google Scholar
(6)Kurtz, J. C. and Sledd, W. T.Uniform summabiity of power series. Proc. Cambridge Philos. Soc. 71 (1972), 335342.CrossRefGoogle Scholar
(7)Lorentz, G. G. and Zeller, K.Abschmittslimitierbarkeit und der Satz von Hardy–Bohr. Arch. Math. (Basel) 15 (1964), 208213.CrossRefGoogle Scholar
(8)Peyerimhoff, A.Lectures on summabitity (Springer-Verlag, Berlin, 1969).CrossRefGoogle Scholar
(9)Peyerimhoff, A.Über ein Lemma von Herrn H. C. Chow. J. London Math. Soc. 32 (1957), 3336.CrossRefGoogle Scholar
(10)Zeller, K.Approximation in Wirkfeldern von Summierungsverfahren. Arch. Math. (Basel) 4 (1953), 425431.Google Scholar
(11)Zeller, K.Theorie der Limitierungsverfahren (Springer-Verlag, Berlin, 1958).CrossRefGoogle Scholar