Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T08:03:14.630Z Has data issue: false hasContentIssue false

Not all H′-algebras are operator algebras

Published online by Cambridge University Press:  24 October 2008

T. K. Carne
Affiliation:
Trinity College, Cambridge, CB2 1TQ

Extract

An H′-algebra which is not an operator algebra is constructed. This is used to prove that the class of operator algebras is not equal to the class of α-algebras for any tensor norm α.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Carne, T. K.Tensor products and Banach algebras. J. London Math. Soc. 17 (1978), 480488.CrossRefGoogle Scholar
(2)Charpentier, PH. Q-algèbres et produits tensoriels topologiques. Thèse, Orsay (1973).Google Scholar
(3)Grothendieck, A.Résumé de la théorie métrique des produits tensoriels topologiques. Bol. Soc. Mat. São Paulo 8 (1956), 179.Google Scholar
(4)Sakai, S.C*-algebras and W*-algebras (Berlin, Heidelberg, New York, Springer-Verlag, 1971).Google Scholar
(5)Tonge, A. M.Banach algebras and absolutely summing operators. Proc. Cambridge Philos. Soc. 80,(1976), 465473.CrossRefGoogle Scholar
(6)Varopoulos, N. Th.A theorem on operator algebras. Math. Scand. 37 (1975), 173182.CrossRefGoogle Scholar
(7)Varopoulos, N. Th.Sur une inégalitéde von Neumann. C. R. Acad. Sci. Paris A 277 (1973), 1922.Google Scholar