Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T07:04:35.099Z Has data issue: false hasContentIssue false

A note on the algebra of Poisson brackets

Published online by Cambridge University Press:  24 October 2008

C. J. Atkin
Affiliation:
Department of Mathematics, Victoria University of Wellington, New Zealand

Extract

In a long sequence of notes in the Comptes Rendus and elsewhere, and in the papers [1], [2], [3], [6], [7], Lichnerowicz and his collaborators have studied the ‘classical infinite-dimensional Lie algebras’, their derivations, automorphisms, co-homology, and other properties. The most familiar of these algebras is the Lie algebra of C vector fields on a C manifold. Another is the Lie algebra of ‘Poisson brackets’, that is, of C functions on a C symplectic manifold, with the Poisson bracket as composition; some questions concerning this algebra are of considerable interest in the theory of quantization – see, for instance, [2] and [3].

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Avez, A., Diaz-Miranda, A. and Lichhnerowicz, A.. Sur l'algèbre des automorphismes infinitésimaux d'une variété symplectique. J. Differential Geom. 9 (1974), 140.CrossRefGoogle Scholar
[2] Bayen, F., Flato, M., Fronsdahl, C., Lichnerowicz, A. and Sternheimer, D.. Deformation theory and quantization. I. Deformations of symplectic structures. Ann. Phys. 111 (1978), 61110.CrossRefGoogle Scholar
[3] Bayen, F., Flato, M., Fronsdahl, C., A. Lichnerowicz and D. Sternheimer. Deformation theory and quantization. II. Physical applications. Ann. Physics 111 (1978), 111151.CrossRefGoogle Scholar
[4] Grabowski, J.. Isomorphisms and ideals of the Lie algebras of vector fields. Invent. Math. 50 (1978), 1333.CrossRefGoogle Scholar
[5] Jacobson, N.. The theory of rings. Amer. Math. Soc. Mathematical Surveys, vol. ii. (Amer.Math. Soc, 1943).CrossRefGoogle Scholar
[6] Lichnerowicz, A.. Sur l'algèbre de Lie des champs de vecteurs. Comment. Math. Helv. 51 (1976), 343368.CrossRefGoogle Scholar
[7] Lichnerowicz, A.. Les variétés de Poisson et leurs algèbres de Lie associées. J. Differential Geom. 12 (1977), 253300.CrossRefGoogle Scholar
[8] Omori, H.. Infinite-dimensional Lie transformation groups. Lecture Notes in Mathematics 427. (Springer 1974).CrossRefGoogle Scholar
[9] Pursell, L. and Shanks, M.. The Lie algebra of a smooth manifold. Proc. Amer. Math. Soc. 5 (1954), 468472.Google Scholar
[10] Urwin, R.. Lie algebras which determine a symplectic manifold (preprint).Google Scholar
[11] Wojtyński, W.. Automorphisms of the Lie algebra of all real analytic vector fields on a circle are inner. Bull. Acad. Polon. Sci. Sir. Sci. Math., Phys., Astronom. 23 (1975), 11011105.Google Scholar
[12] Zariski, O. and Samuel, P.. Commutative Algebra. vol. 1. (Van Nostrand, 1958).Google Scholar