Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T06:55:46.164Z Has data issue: false hasContentIssue false

On a functional equation

Published online by Cambridge University Press:  24 October 2008

C. T. Rajagopal
Affiliation:
Ramanujan Institute of Mathematics, University of Madras
A. R. Reddy
Affiliation:
Ramanujan Institute of Mathematics, University of Madras

Extract

Introduction. The object of this note is to give a proof of the following theorem on the solution of an important functional equation.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1965

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1)Boas, R. P. and Buck, R. C.Polynomial expansions of analytic junctions (Springer; Berlin, 1958).CrossRefGoogle Scholar
(2)Ganapathy Iyer, V.Review of (4) below. Math. Reviews 25 (1963), 473.Google Scholar
(3)Hurwitz, A.Sur l'intégrale finie d'une fonction entière. Acta Math. 20 (1897), 285312.CrossRefGoogle Scholar
(4)Krishnamrthy, V.On the continuous endomorphisms in the spaces of certain classes of entire functions. Proc. Nat. Inst. Sci. India Part A 26 (1960), 642655.Google Scholar
(5)Sheila., ScottOn the asymptotic periods of integral functions. Proc. Cambridge Philos. Soc. 31 (1935), 543554.Google Scholar
(6)Whittaker, J. M.Interpolatory function theory (Cambridge, 1935).Google Scholar