Published online by Cambridge University Press: 24 October 2008
Recently, through a repeated application of one-dimensional finite integral transforms, Cinelli(1) gave a solution for the temperature distribution in a hollow circular cylinder of finite length. Since no new ideas or techniques are introduced, the extension claimed in (1) with regard to the finite Hankel transform technique employed in the transformation of the radial space variable in the hollow cylinder problem is trivial, in view of well-known works by Sneddon(2) and Tranter (3), to mention a few. The list of the finite Hankel transforms given in (1) for a variety of boundary conditions at r = a and r = b is the result of routine, algebraic manipulations well known from the general theory of eigenvalue problems specialized for the hollow cylinder. In this list a set of seemingly different series expansions is given for the inverse Hankel transform for each combination of boundary conditions at the two radial surfaces. In each case, the two expressions for inversion can readily be shown to be identical to each other when use is made of the frequency equation. One of the inversion forms is therefore unnecessary once the other is given. Furthermore, the general solution as given by equation (54) of Cinelli(1)does not satisfy his boundary conditions (27), (28), (29) and (30), unless these latter are homogeneous.