Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T09:28:26.648Z Has data issue: false hasContentIssue false

On absolute summability factors of infinite series and their application to Fourier series

Published online by Cambridge University Press:  24 October 2008

R. N. Mohapatra
Affiliation:
Department of Mathematics, University of Jabalpur, Jabalpur, India
G. Das
Affiliation:
Department of Mathematics, University of Jabalpur, Jabalpur, India
V. P. Srivastava
Affiliation:
Department of Mathematics, University of Jabalpur, Jabalpur, India

Extract

Definition. Let {sn} be the n-th partial sum of a given infinite series. If the transformation

where

is a sequence of bounded variation, we say that εanis summable |C, α|.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1967

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Bosanquet, L. S.Absolute Cesàro summability of a Fourier series. Proc. London Math. Soc. (2), 41 (1936), 517528.CrossRefGoogle Scholar
(2)Bosanquet, L. S.Note on Bohr-Hardy theorem. J. London Math. Soc. 17 (1942), 166173.CrossRefGoogle Scholar
(3)Chow, H. C.On the summability factors of Fourier series. J. London Math. Soc. 16 (1941), 215220.CrossRefGoogle Scholar
(4)Das, G., Srivastava, V. P. and Mohapatra, R. N. On absolute summability factors of infinite series. Forthcoming in the J. Indian Math. Soc.Google Scholar
(5)Kogbetliantz, E.Sur les séries absolument sommables par la méthode des moyennes arithmétique. Bull. Sci. Math. (2), 49 (1925), 234256.Google Scholar
(6)Lal, S. N.On the absolute Harmonic summability of the factored Fourier series. Proc. Amer. Math. Soc. 14 (1963), 311319.Google Scholar
(7)McFadden, L.Absolute Nörlund summability. Duke Math. J. 9 (1942), 168207.CrossRefGoogle Scholar
(8)Pati, T. and Sinha, S. R.On the absolute summability factors of Fourier series. Indian J. Math. 1 (1958), 4154.Google Scholar
(9)Sunouchi, G.On the absolute summability factors. Kodai Math. Sem. Rep. (1954).CrossRefGoogle Scholar
(10)Varshney, O. P.On the absolute Harmonic summability of a series related to a Fourier series. Proc. Amer. Math. Soc. 10 (1959), 784789.CrossRefGoogle Scholar
(11)Zygmund, A.Trigonometric series (Cambridge, 1959).Google Scholar