Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T05:18:55.139Z Has data issue: false hasContentIssue false

On Certain Classes of Locally Soluble Groups

Published online by Cambridge University Press:  24 October 2008

J. E. Roseblade
Affiliation:
Trinity CollegeCambridge

Extract

A group G is called locally soluble if every finitely generated subgroup of G is soluble. Terms like ‘locally nilpotent’ and ‘locally finite’ are defined similarly.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1962

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Hall, P. JLondon Math. Soc. 34 (1959), 289304.CrossRefGoogle Scholar
(2)Hirsch, K. AProc. London Math. Soc. 44 (1938), 5360.CrossRefGoogle Scholar
(3)Hirsch, K. AProc. London Math. Soc. 44 (1938), 336344.CrossRefGoogle Scholar
(4)Hirsch, K. AProc. London Math. Soc. 49 (1946), 184194.CrossRefGoogle Scholar
(5)Hirsch, K. AJ. London Math. Soc. 27 (1952), 8185.CrossRefGoogle Scholar
(6)Hirsch, K. AJ. London Math. Soc. 29 (1954), 250254.CrossRefGoogle Scholar
(7)Mal'cev, A. IMat. Sb. N.S. 8 (50) (1940), 405422.Google Scholar
(8)Mal'cev, A. IMat. Sb. N.S. 22 (64) (1948), 351352.Google Scholar
(9)Mal'cev, A. IIzv. Akad. Nauk. SSSR, Ser. Math. 13 (1949), 201212.Google Scholar
(10)Mal'cev, A. IMat. Sb. N.S. 28 (70) (1951), 567588;Google Scholar
American Math. Soc. Trans. Ser. 2, Vol. 2 (1956), 122.Google Scholar
(11)Jennings, S. ACanadian J. Math. 7 (1955), 169187.CrossRefGoogle Scholar
(12)Schreier, O.Abh. Math. Sem. Univ. Hamburg, 6 (1928), 300.CrossRefGoogle Scholar
(13)Zassenhaus, H.Abh. Math. Sem. Univ. Hamburg, 12 (1937–38), 289312.CrossRefGoogle Scholar
(14)Baer, R.Math. Ann. 129 (1955), 139173.CrossRefGoogle Scholar
(15)Smirnov, D. MMat. Sb. N.S. 32 (1953), 365384.Google Scholar
(16)Kurosch, A. GThe theory of groups (Chelsea, 1956).Google Scholar
(17)Fuchs, L.Abelian groups (Pergamon Press, 1959).Google Scholar
(18)Zassenhaus, H.The theory of groups (2nd ed.Chelsea, 1958).Google Scholar