Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T19:08:02.042Z Has data issue: false hasContentIssue false

On generalized albanese varieties for surfaces

Published online by Cambridge University Press:  24 October 2008

Hurşit Önsiper
Affiliation:
Department of Electrical Engineering, Middle East Technical University, Ankara, Turkey

Extract

Given a variety X over a field k and a dense open subset U of X, the related generalized albanese problem has two parts. First we want to classify rational maps with domain U into commutative algebraic groups, into reasonable categories, and then in each category we want to find an object α which is universal in the sense that any β in this category factors through α.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Faltings, G. and Wüsthorz, C.. Einbettungen kommutativer algebraischer Gruppen und einige ihrer Eigenschaften. J. Reine Angew. Math. 354 (1984), 175205.Google Scholar
[2]Kato, K. and Saito, S.. Two dimensional class field theory, Galois groups and representations. In Adv. Studies in Pure Math. 2, (1983), pp. 105152.Google Scholar
[3]Önsiper, H.. Rigidifled Picard functor and extensions of abelian schemes. Arch. Math. (Basel), 49 (1987), 503507.CrossRefGoogle Scholar
[4]Raynaud, M.. Spécialisation du Foncteur de Picard. Inst. Hautes Etudes Sci. Publ. Math. 36 (1970), 2776.CrossRefGoogle Scholar
[5]Serre, J. P.. Morphismes universels et variétés d'albanese. Séminaire Chevalley, exposé 10, 1958/1959.Google Scholar
[6]Serre, J. P., Groupes Algébriques et Corps de Classes (Hermann, 1959).Google Scholar
[7]Serre, J. P.. Morphisms universels et différentiels de troisème espice. Séminaire Chevalley, exposé 11, 1958/1959.Google Scholar