Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T06:19:26.309Z Has data issue: false hasContentIssue false

On Jacobi polynomials

Published online by Cambridge University Press:  24 October 2008

P. C. Munot
Affiliation:
Department of Mathematics, The University, Jodhpur, India

Extract

1. The object of this paper is to prove some formulae of Jacobi polynomials including a generating function. The results (2·l)–(2·4), (2·6)–(2·9), (3·l)–(3·4), and (4·1) are believed to be new.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Bailey, W. N.Generalised hypergeometric series (Cambridge Math. Tract, 1935).Google Scholar
(2)Bbomwich, T. J. I'a.Introduction to the theory of infinite series, 2nd ed. (London: Macmillan and Co., 1959.)Google Scholar
(3)Ebdélyi, A. et al. Higher transcendental junctions, vol. I (New York: McGraw-Hill, 1953).Google Scholar
(4)Ebdélyi, A. et al. Higher transcendental functions, vol. II (New York: McGraw-Hill, 1953).Google Scholar
(5)Feldheim, E.Relations entre les polynomes de Jacobi, Laguerre et Hermite. Acta Math. 74 (1941), 117138.Google Scholar
(6)Manooha, H. L. and Shabma, B. L.Summation of infinite series. J. Austral. Math. Soc. 6 (1966), 470476.CrossRefGoogle Scholar
(7)Manocha, H. L. and Shabma, B. L.Some formulae for Jacobi polynomials. Proc. Cambridge Philos. Soc. 62 (1966), 459462.Google Scholar
(8)Rainville, E. D.Special functions (New York: Macmillan, 1963).Google Scholar
(9)Slater, L. J.Generalised hypergeometric functions (Cambridge, 1966).Google Scholar
(10)Cablitz, L.On Jacobi polynomials. Boll. un. Mat. Ital. 11 (1956), 371381.Google Scholar