Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-19T15:10:28.276Z Has data issue: false hasContentIssue false

On Loewy lengths of blocks

Published online by Cambridge University Press:  20 February 2014

SHIGEO KOSHITANI
Affiliation:
Department of Mathematics and Informatics, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522Japan. e-mail: koshitan@math.s.chiba-u.ac.jp
BURKHARD KÜLSHAMMER
Affiliation:
Mathematisches Institut, Friedrich–Schiller–Universität, D-07737 Jena, Germany. e-mail: kuelshammer@uni-jena.de
BENJAMIN SAMBALE
Affiliation:
Mathematisches Institut, Friedrich–Schiller–Universität, D-07737 Jena, Germany. e-mail: benjamin.sambale@uni-jena.de

Abstract

We give a lower bound on the Loewy length of a p-block of a finite group in terms of its defect. We then discuss blocks with small Loewy length. Since blocks with Loewy length at most 3 are known, we focus on blocks of Loewy length 4 and provide a relatively short list of possible defect groups. It turns out that p-solvable groups can only admit blocks of Loewy length 4 if p=2. However, we find (principal) blocks of simple groups with Loewy length 4 and defect 1 for all p ≡ 1 (mod 3). We also consider sporadic, symmetric and simple groups of Lie type in defining characteristic. Finally, we give stronger conditions on the Loewy length of a block with cyclic defect group in terms of its Brauer tree.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Alperin, J. L., Collins, M. J. and Sibley, D. A.Projective modules, filtrations and Cartan invariants. Bull. London Math. Soc. 16 (1984), 416420.Google Scholar
[2]Benson, D. J.The Loewy structure of the projective indecomposable modules for A 8 in characteristic 2. Comm. Algebra 11 (1983), 13951432.Google Scholar
[3]Benson, D. J.The Loewy structure of the projective indecomposable modules for A 9 in characteristic 2. Comm. Algebra 11 (1983), 14331453.Google Scholar
[4]Bonnafé, C.Representations of ${\rm SL}_2(\mathbb F_q)$. Algebr. Appl. vol. 13 (Springer-Verlag, London, 2011).Google Scholar
[5]Brauer, R. and Nesbitt, C.On the modular characters of groups. Ann. of Math. (2) 42 (1941), 556590.Google Scholar
[6]Broué, M.Brauer coefficients of p-subgroups associated with a p-block of a finite group. J. Algebra 56 (1979), 365383.Google Scholar
[7]Chang, B. and Ree, R.The characters of G 2(q). In: Symposia Mathematica, vol. XIII (Convegno di Gruppi e loro Rappresentazioni, INDAM, Rome, 1972), 395–413. (Academic Press, London, 1974).Google Scholar
[8]Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A.ATLAS of Finite Groups (Oxford University Press, 1985).Google Scholar
[9]Danz, S. 3-blocks of weight 3, private communication (Nov 8, 2012).Google Scholar
[10]Eaton, C. W., Kessar, R., Külshammer, B. and Sambale, B.2-blocks with abelian defect groups. Adv. Math. 254 (2014), 706735.Google Scholar
[11]Fong, P. and Srinivasan, B.Blocks with cyclic defect groups in GL(n, q). Bull. Amer. Math. Soc. (N.S.) 3 (1980), 10411044.Google Scholar
[12]The GAP Group GAP – Groups, Algorithms and Programming, Version 4.6.4 (2013) (http://www.gap-system.org).Google Scholar
[13]Gorenstein, D., Lyons, R. and Solomon, R.The classification of the finite simple groups, Math. Surveys Monogr., vol. 40.I (American Mathematical Society, Providence, RI, 1994).Google Scholar
[14]Gorenstein, D., Lyons, R. and Solomon, R.The classification of the finite simple groups. no 3. Part I. Chapter A. Math. Surveys Monogr. vol. 40 (American Mathematical Society, Providence, RI, 1998).Google Scholar
[15]Hiss, G. and Lux, K.Brauer Trees of Sporadic Groups. Oxford Science Publications (The Clarendon Press, Oxford University Press, New York, 1989).Google Scholar
[16]Hiss, G. and Shamash, J.3-blocks and 3-modular characters of G 2(q). J. Algebra 131 (1990), 371387.Google Scholar
[17]Hu, Y. and Ye, J.On the first Cartan invariant for the finite group of type G 2. Comm. Algebra 30 (2002), 45494573.Google Scholar
[18]Humphreys, J. E.Modular representations of finite groups of Lie type. London Math. Society Lecture Note Series vol. 326 (Cambridge University Press, Cambridge, 2006).Google Scholar
[19]Huppert, B.Endliche Gruppen. I. Die Grundlehren der Mathematischen Wissenschaften, Band 134 (Springer-Verlag, Berlin, 1967).Google Scholar
[20]James, G.The decomposition matrices of GLn(q) for n ≤ 10. Proc. London Math. Soc. (3) 60 (1990), 225265.Google Scholar
[21]James, G. and Kerber, A.The representation theory of the symmetric group. Encyclopedia Math. Appl. vol. 16 (Addison-Wesley Publishing Co., Reading, Mass., 1981).Google Scholar
[22]Jennings, S. A.The structure of the group ring of a p-group over a modular field. Trans. Amer. Math. Soc. 50 (1941), 175185.Google Scholar
[23]Kessar, R. and Linckelmann, M.On blocks with Frobenius inertial quotient. J. Algebra 249 (2002), 127146.Google Scholar
[24]Koshitani, S.On lower bounds for the radical of a block ideal in a finite p-solvable group. Proc. Edinburgh Math. Soc. (2) 27 (1984), 6571.Google Scholar
[25]Koshitani, S.Cartan invariants of group algebras of finite groups. Proc. Amer. Math. Soc. 124 (1996), 23192323.Google Scholar
[26]Koshitani, S. On the projective cover of the trivial module over a group algebra of a finite group. Comm. Algebra (to appear).Google Scholar
[27]Koshitani, S. and Miyachi, H.Donovan conjecture and Loewy length for principal 3-blocks of finite groups with elementary abelian Sylow 3-subgroup of order 9. Comm. Algebra 29 (2001), 45094522.CrossRefGoogle Scholar
[28]Koshitani, S. and Yoshii, Y.Eigenvalues of Cartan matrices of principal 3-blocks of finite groups with abelian Sylow 3-subgroups. J. Algebra 324 (2010), 19851993.Google Scholar
[29]Külshammer, B.Bemerkungen über die Gruppenalgebra als symmetrische Algebra. II. J. Algebra 75 (1982), 5969.Google Scholar
[30]Külshammer, B.Crossed products and blocks with normal defect groups. Comm. Algebra 13 (1985), 147168.Google Scholar
[31]Külshammer, B.Group-theoretical descriptions of ring-theoretical invariants of group algebras. In Representation theory of finite groups and finite-dimensional algebras (Bielefeld, 1991), 425–442 Progr. Math., vol. 95 (Birkhäuser, Basel, 1991).Google Scholar
[32]Müller, J.The Monster in characteristic 11. Private communication (May 2, 2013).Google Scholar
[33]Naehrig, M. Die Brauer–Büme des Monsters M in Charakteristik 29, Diplomarbeit, 2002, Aachen.Google Scholar
[34]Narasaki, R. and Uno, K.Isometries and extra special Sylow groups of order p 3. J. Algebra 322 (2009), 20272068.Google Scholar
[35]Neusel, M. D. and Smith, L.Invariant theory of finite groups. Math. Surveys Monogr., vol. 94 (American Mathematical Society, Providence, RI, 2002).Google Scholar
[36]Okuyama, T.On blocks of finite groups with radical cube zero. Osaka J. Math. 23 (1986), 461465.Google Scholar
[37]Oppermann, S.A lower bound for the representation dimension of kCnp. Math. Z. 256 (2007), 481490.Google Scholar
[38]Puig, L.Nilpotent blocks and their source algebras. Invent. Math. 93 (1988), 77116.Google Scholar
[39]Sambale, B.Fusion systems on metacyclic 2-groups. Osaka J. Math. 49 (2012), 325329.Google Scholar
[40]Schreier, O.Über die Erweiterung von Gruppen II. Abhandlungen Hamburg 4 (1926), 321346.Google Scholar
[41]Scopes, J.Symmetric group blocks of defect two. Quart. J. Math. Oxford Ser. (2) 46 (1995), 201234.Google Scholar
[42]Tan, K. M.Martin's conjecture holds for weight 3 blocks of symmetric groups. J. Algebra 320 (2008), 11151132.Google Scholar
[43]Webb, P. J.The Auslander-Reiten quiver of a finite group. Math. Z. 179 (1982), 97121.Google Scholar
[44]White, D. L.Decomposition numbers of Sp(4,q) for primes dividing q ± 1. J. Algebra 132 (1990), 488500.Google Scholar
[45]White, D. L.Decomposition numbers of Sp4(2a) in odd characteristics. J. Algebra 177 (1995), 264276.Google Scholar
[46]Wilkinson, D.The groups of exponent p and order p 7 (p any prime). J. Algebra 118 (1988), 109119.Google Scholar
[47]Wilson, R. A.The finite simple groups. Graduate Texts in Math., vol. 251 (Springer-Verlag London Ltd., London, 2009).Google Scholar
[48]Winter, D. L.The automorphism group of an extraspecial p-group. Rocky Mountain J. Math. 2 (1972), 159168.Google Scholar