Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T06:56:41.623Z Has data issue: false hasContentIssue false

On maximal ideals in certain reduced twisted C*-crossed products

Published online by Cambridge University Press:  04 February 2015

ERIK BÉDOS
Affiliation:
Institute of Mathematics, University of Oslo, PB 1053 Blindern, N-0316 Oslo, Norway. e-mail: bedos@math.uio.no
ROBERTO CONTI
Affiliation:
Dipartimento di Scienze di Base e Applicate per l'Ingegneria, Sezione di Matematica, Sapienza Università di Roma, Via A. Scarpa 16, I-00161 Roma, Italy. e-mail: roberto.conti@sbai.uniroma1.it

Abstract

We consider a twisted action of a discrete group G on a unital C*-algebra A and give conditions ensuring that there is a bijective correspondence between the maximal invariant ideals of A and the maximal ideals in the associated reduced C*-crossed product.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Bédos, E.Discrete groups and simple C*-algebras. Math. Proc. Camb. Phil. Soc. 109 (1991), 521537.CrossRefGoogle Scholar
[2]Bédos, E.On the uniqueness of the trace on some simple C*-algebras. J. Operator Theo. 30 (1993), 149160.Google Scholar
[3]Bédos, E. and Conti, R.On discrete twisted C*-dynamical systems, Hilbert C*-modules and regularity. Münster J. Math. 5 (2012), 183208.Google Scholar
[4]Bédos, E. and Conti, R.Fourier series and twisted C*-crossed products. J. Fourier Anal. Appl. 21 (2015), 3275.CrossRefGoogle Scholar
[5]Bekka, M. E., Cowling, M. and de la Harpe, P.. Some groups whose reduced C*-algebra is simple. Inst. Hautes Études Sci. Publ. Math. no. 80 (1994), 117134.CrossRefGoogle Scholar
[6]Boca, F. and Nitica, V.Combinatorial properties of groups and simple C*-algebras with a unique trace. J. Operator Theo. 20 (1988) 183196.Google Scholar
[7]Breuillard, E., Kalantar, M., Kennedy, M. and Ozawa, N.. C*-simplicity and the unique trace property for discrete groups. Preprint (2014), arXiv: 1410.2518v3.Google Scholar
[8]Brown, N. P. and Ozawa, N.C*-Algebras and Finite-Dimensional Approximations. Graduate Studies in Mathematics, vol. 88 (Amer. Math. Soc., Providence, RI, 2008).CrossRefGoogle Scholar
[9]Echterhoff, S. Crossed products, the Mackey–Rieffel–Green machine and applications. Preprint (2010), arXiv:1006.4975.Google Scholar
[10]Ellis, R.Lectures on Topological Dynamics. (W.A. Benjamin, Inc. New York, 1969).Google Scholar
[11]Exel, R.Amenability for Fell bundles. J. Reine Angew. Math. 492 (1997), 4173.Google Scholar
[12]Exel, R.Exact groups and Fell bundles. Math. Ann. 323 (2002), 259266.CrossRefGoogle Scholar
[13]Exel, R. Exact groups, induced ideals and Fell bundles. Preprint (2000), version 1 of [12], arXiv:math/0012091v1.Google Scholar
[14]Giordano, T. and de la Harpe, P.. Groupes de tresses et moyennabilité intérieure. Ark. Mat. 29 (1991), 6372.CrossRefGoogle Scholar
[15]Guivarc'h, Y. and Starkov, A. N.. Orbits of linear group actions, random walks on homogeneous spaces and toral automorphisms. Ergodic Theory Dynam. Systems 24 (2004), 767802.CrossRefGoogle Scholar
[16]Haagerup, U. and Zsido, L.Sur la propriété de Dixmier pour les C*-algèbres. C. R. Acad. Sci. Paris 298 (1984), 173177.Google Scholar
[17]de la Harpe, P.. On simplicity of reduced group C*-algebras. Bull. Lond. Math. Soc. 39 (2007), 126.CrossRefGoogle Scholar
[18]de la Harpe, P. and Skandalis, G.. Powers' property and simple C*-algebras. Math. Ann. 273 (1986), 241250.CrossRefGoogle Scholar
[19]de la Harpe, P. and Préaux, J.-P.. C*-simple groups: amalgamated free products, HNN-extensions, and fundamental groups of 3-manifolds. J. Topol. Anal. 3 (2011), 451489.CrossRefGoogle Scholar
[20]Hindman, N., Legette, L. and Strauss, D.The number of minimal left and minimal right ideals in βS. Topology Proc. 39 (2012), 4568.Google Scholar
[21]Hindman, N. and Strauss, D.Algebra in the Stone–Cech compactification – Theory and applications (2nd revised and extended ed.). (De Gruyter, Berlin/Boston, 2012).CrossRefGoogle Scholar
[22]Ivanov, N. A.On the structure of some reduced amalgamated free product C*-algebras. Internat. J. of Math. 22 (2011), 281306.CrossRefGoogle Scholar
[23]Kirchberg, E. and Wassermann, S.Permanence properties of C*-exact groups. Doc. Math. J. 4 (1999), 513558.CrossRefGoogle Scholar
[24]Muchnik, R.Semigroup actions on $\bb {T}$n. Geom. Dedicata 110 (2005), 147.CrossRefGoogle Scholar
[25]Olshanskii, A. and Osin, D.C*-simple groups without free subgroups. Groups Geom. Dyn. 8 (2014), 933983.CrossRefGoogle Scholar
[26]Packer, J. A. and Raeburn, I.Twisted crossed products of C*-algebras. Math. Proc. Camb. Phil. Soc. 106 (1989), 293311.CrossRefGoogle Scholar
[27]Peterson, J. and Thom, A.Group cocycles and the ring of affiliated operators. Invent. Math. 185 (2011), 561592.CrossRefGoogle Scholar
[28]Popa, S.On the relative Dixmier property for inclusions of C*-algebras. J. Funct. Anal. 171 (2000), 139154.CrossRefGoogle Scholar
[29]Powers, R. T.Simplicity of the C*-algebra associated with the free group on two generators. Duke Math. J. 42 (1975), 151156.CrossRefGoogle Scholar
[30]Poznansky, T. Characterisation of linear groups whose reduced C*-algebras are simple. Preprint (2008), arXiv:0812.2486.Google Scholar
[31]Promislow, S. D.A class of groups producing simple, unique trace C*-algebras. Math. Proc. Camb. Phil. Soc. 114 (1993), 223233.CrossRefGoogle Scholar
[32]Quigg, J. C. and Spielberg, J.Regularity and hyporegularity in C*-dynamical systems. Houston J. Math. 18 (1992), 139152.Google Scholar
[33]Sierakowski, A.The ideal structure of reduced crossed products. Münster J. Math. 3 (2010), 237262.Google Scholar
[34]Tucker–Drob, R. D. Shift-minimal groups, fixed price 1, and the unique trace property. Preprint (2012), arXiv:1211.6395.Google Scholar
[35]Williams, D. P.Crossed Products of C*-Algebras. Mathematical Surveys and Monographs, vol. 134 (Amer. Math. Soc., Providence, RI, 2007).CrossRefGoogle Scholar
[36]Zeller-Meier, G.Produits croisés d'une C*-algèbre par un groupe d'automorphismes. J. Math. Pures Appl. 47 (1968), 101239.Google Scholar