Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T06:49:10.192Z Has data issue: false hasContentIssue false

On the Arf invariant of links

Published online by Cambridge University Press:  24 October 2008

K. Murasugi
Affiliation:
University of Toronto, Canada

Extract

Let Δl(x, y) be a Alexander polynomial of a link l of two components X and Y in S3. Denote by Arf (Z) the Arf invariant of Z, a knot or a proper link [9]

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Crowell, R. H. and Fox, R. H.. Introduction to Knot Theory (Ginn, 1963).Google Scholar
[2] Hausmann, J. C. (ed.). Knot Theory, Proceedings, Plans-sur-Bex, Switzerland, 1977, Lecture Notes in Math. vol. 685 (Springer-Verlag, 1978).Google Scholar
[3] Kojima, S. and Yamasaki, M.. Some new invariants of links. Invent. Math. 54 (1979), 213228.CrossRefGoogle Scholar
[4] Maeda, T. and Mtjrasugi, K.. overing linkage invariants and Fox's Problem 13. In Low Dimensional Topology, Contemporary Mathematics vol. 20 (Amer. Math. Soc, 1983), 271283.CrossRefGoogle Scholar
[5] Mubasugi, K.. On the Minkowski unit of slice links. Trans. Amer. Math. Soc. 114 (1965), 377383.CrossRefGoogle Scholar
[6] Mtjbasttgi, K.. On a certain numerical invariant of link types. Trans. Amer. Math. Soc. 117 (1965), 387422.Google Scholar
[7] Mubasugi, K.. The Arf invariant for knot types. Proc. Amer. Math. Soc. 21 (1969), 6972.CrossRefGoogle Scholar
[8] Mubasugi, K.. On the signature of links. Topology 9 (1970), 283298.CrossRefGoogle Scholar
[9] Robertello, R. A.. An invariant of knot cobordism. Comm. Pure Appl. Math. 18 (1965), 543555.CrossRefGoogle Scholar
[10] Torres, G.. On the Alexander polynomial. Ann. of Math. 57 (1953), 5789.CrossRefGoogle Scholar