Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T00:43:20.276Z Has data issue: false hasContentIssue false

On the basis-conjugating automorphism groups of free groups and free metabelian groups

Published online by Cambridge University Press:  08 December 2014

TAKAO SATOH*
Affiliation:
Department of Mathematics, Faculty of Science Division II, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo, 162-8601, Japan. e-mail: takao@rs.tus.ac.jp

Abstract

In this paper we study the images of the Johnson homomorphisms of the basis-conjugating automorphism groups of free groups and free metabelian groups. In particular, we show that the Johnson image is contained in a certain proper Lie subalgebra $\mathfrak{p}$Mn of the derivation algebra of the Chen Lie algebra. Furthermore, we completely determine the Johnson images, and give the abelianisation of $\mathfrak{p}$Mn as a Lie algebra by using Morita's trace maps.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Andreadakis, S.On the automorphisms of free groups and free nilpotent groups. Proc. London Math. Soc. (3) 15 (1965), 239268.CrossRefGoogle Scholar
[2]Bachmuth, S.Automorphisms of free metabelian groups. Trans. Amer. Math. Soc. 118 (1965), 93104.CrossRefGoogle Scholar
[3]Bachmuth, S.Induced automorphisms of free groups and free metabelian groups. Trans. Amer. Math. Soc. 122 (1966), 117.CrossRefGoogle Scholar
[4]Bachmuth, S. and Mochizuki, H. Y.The non-finite generation of Aut(G), G free metabelian of rank 3, Trans. Amer. Math. Soc. 270 (1982), 693700.Google Scholar
[5]Bachmuth, S. and Mochizuki, H. Y.Aut(F) → Aut(F/F”) is surjective for free group for rank ⩾ 4, Trans. Amer. Math. Soc. 292, no. 1 (1985), 81101.Google Scholar
[6]Bestvina, M., Bux, Kai–Uwe and Margalit, D.Dimension of the Torelli group for Out (Fn). Invent. Math. 170 (2007), no. 1, 132.CrossRefGoogle Scholar
[7]Birman, J. S.Braids, Links, and Mapping Class Groups. Ann. of Math. Stud. 82. Princeton University Press (1974).Google Scholar
[8]Bourbaki, N.Lie groups and Lie Algebra, Chapters 1–3, Softcover edition of the 2nd printing, Springer-Verlag (1989).Google Scholar
[9]Chen, K. T.Integration in free groups. Ann. of Math. 54, no. 1 (1951), 147162.Google Scholar
[10]Church, T. and Farb, B.Infinite generation of the kernels of the Magnus and Burau representations. Algebr. Geom. Topol. 10 (2010), 837851.Google Scholar
[11]Cohen, F. and Pakianathan, J. On automorphism groups of free groups. and their nilpotent quotients, preprint.Google Scholar
[12]Cohen, F. and Pakianathan, J. On subgroups of the automorphism group of a free group and associated graded Lie algebras, preprint.Google Scholar
[13]Cohen, F., Pakianathan, J., Vershinin, V. V. and Wu, J.Basis-conjugating automorphisms of a free group and associated Lie algebras. Geom. Topol. Monogr. 13 (2008), 147168.Google Scholar
[14]Enomoto, N. and Satoh, T.On the derivation algebra of the free Lie algebra and trace maps. Algebr Geom. Topol 11 (2011) 28612901.Google Scholar
[15]Farb, B. Automorphisms of Fn which act trivially on homology, in preparation.Google Scholar
[16]Hain, R.Infinitesimal presentations of the Torelli group. J. Amer. Math. Soc. 10 (1997), 597651.CrossRefGoogle Scholar
[17]Hall, M.A basis for free Lie rings and higher commutators in free groups. Proc. Amer. Math. Soc. 1 (1950), 575581.Google Scholar
[18]Hall, M.The Theory of Groups, second edition (AMS Chelsea Publishing, 1999).Google Scholar
[19]Johnson, D.An abelian quotient of the mapping class group. Math. Ann. 249 (1980), 225242.Google Scholar
[20]Johnson, D.The structure of the Torelli group I: a Finite Set of Generators for $\mathcal{I}$. Ann. Math. 2nd Ser. 118, No. 3 (1983), 423442.CrossRefGoogle Scholar
[21]Johnson, D.The structure of the Torelli group II: a characterisation of the group generated by twists on bounding curves. Topo. 24, No. 2 (1985), 113126.Google Scholar
[22]Johnson, D.The structure of the Torelli group III: the abelianisation of $\mathcal{I}$. Topo. 24 (1985), 127144.Google Scholar
[23]Kawazumi, N. Cohomological aspects of Magnus expansions, preprint, arXiv:math.GT/0505497.Google Scholar
[24]Krstić, S. and McCool, J.The non-finite presentability in IA(F 3) and GL 2(Z[t, t −1]). Invent. Math. 129 (1997), 595606.Google Scholar
[25]Magnus, W.Über n-dimensinale Gittertransformationen. Acta Math. 64 (1935), 353367.Google Scholar
[26]Magnus, W., Karras, A., and Solitar, D.Combinatorial Group Theory. (Interscience Publ., New York, 1966).Google Scholar
[27]Magnus, W. and Peluso, A.On a theorem of V. I. Arnold. Comm. Pure Appl. Math. XXII (1969), 683692.Google Scholar
[28]McCool, J.On basis-conjugating automorphisms of free groups. Canad. J. Math. XXXVIII, No. 6 (1986), 15251529.Google Scholar
[29]Morita, S.Abelian quotients of subgroups of the mapping class group of surfaces. Duke Math. J. 70 (1993), 699726.Google Scholar
[30]Morita, S.Structure of the mapping class groups of surfaces: a survey and a prospect. Geom. Topo. Monogr. 2 (1999), 349406.Google Scholar
[31]Morita, S.Cohomological structure of the mapping class group and beyond. Proc. Sympos. Pure Math. 74 (2006), 329354.CrossRefGoogle Scholar
[32]Nielsen, J.Die Isomorphismen der allgemeinen unendlichen Gruppe mit zwei Erzeugenden. Math. Ann. 78 (1918), 385397.Google Scholar
[33]Papadima, S. and Suciu, A. I.Homological finiteness in the Johnson filtration of the automorphism group of a free group. J. Topo. 5 (2012), no. 4, 909944.Google Scholar
[34]Pettet, A.The Johnson homomorphism and the second cohomology of IAn. Algeb. Geom. Topo. 5 (2005) 725740.Google Scholar
[35]Reutenauer, C.Free Lie Algebras. London Math. Soc. Monogr., new series, no. 7 (Oxford University Press, 1993).Google Scholar
[36]Satoh, T.New obstructions for the surjectivity of the Johnson homomorphism of the automorphism group of a free group. J. London Math. Soc. (2) 74 (2006) 341360.Google Scholar
[37]Satoh, T.The cokernel of the Johnson homomorphisms of the automorphism group of a free metabelian group. Trans. Amer. Math. Soc. 361 (2009), 20852107.CrossRefGoogle Scholar
[38]Satoh, T.On the lower central series of the IA-automorphism group of a free group. J. Pure Appl. Alg. 216 (2012), 709717.Google Scholar
[39]Satoh, T.The kernel of the Magnus representation of the automorphism group of a free group is not finitely generated. Math. Proc. Camb. Phil. Soc. 151 (2011), 407419.CrossRefGoogle Scholar
[40]Satoh, T.On the Johnson filtration of the basis-conjugating automorphism group of a free group. Michigan Math. J. 61 (2012), 87105.Google Scholar
[41]Satoh, T. A survey of the Johnson homomorphisms of the automorphism groups of free groups and related topics. Submitted to Handbook of Teichmueller theory, volume V.Google Scholar
[42]Witt, E.Treue Darstellung Liescher Ringe. J. Reine Angew. Math. 177 (1937), 152160.Google Scholar