Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-16T13:05:08.361Z Has data issue: false hasContentIssue false

On the group determinant

Published online by Cambridge University Press:  24 October 2008

K. W. Johnson
Affiliation:
The Pennsylvania State University, Ogontz Campus, 1600 Woodland Road, Abington, PA 19001, U.S.A.

Extract

The original motivation for the introduction by Frobenius of group characters for non-abelian groups was the problem of the factorization of the group determinant corresponding to a finite group G. The original papers are [5] and [6] and a good historical survey of the work is given in [7] and [8]. If G is of order n, the group matrix XG is defined to be the n×n matrix {xg, h} where xg, h = xghG. Here the xg, gG, represent variables. The group determinant ΘG is defined to be det(XG), and is thus a polynomial of degree n in the xg. This determinant is the same, up to sign, as that of the matrix obtained from the unbordered multiplication table of G by replacing each element g by xg. If there is no ambiguity ΘG will be written as Θ.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Brauer, R.. Representations of finite groups. In Lectures in Modern Mathematics (editor Saaty, T. L.) (Wiley, 1963), pp. 133175.Google Scholar
[2]Curtis, C. W. and Reiner, I.. Representation Theory of Finite Groups and Algebras (Interscience, 1962).Google Scholar
[3]Diaconis, P.. Group Representations in Probability and Statistics. Lecture Notes – Monograph Series (Institute of Mathematical Statistics, Hayward, California, 1988).CrossRefGoogle Scholar
[4]Formanek, E.. The invariants of n×n matrices. In Invariant Theory (editor Koh, S. S.), Lecture Notes in Math. vol. 1278 (Springer-Verlag, 1987), pp. 1843.CrossRefGoogle Scholar
[5]Frobenius, G.. Über Gruppencharaktere. Sitzungsber. Preuss. Akad. Wiss. Berlin (1896), 9851021. Gesammelte Abhandlungen (Springer-Verlag, 1968), pp. 137.Google Scholar
[6]Frobenius, G.. Über die Primfaktoren der Gruppendeterminante. Sitzungsber. Preuss. Akad. Wiss. Berlin (1896). 13431382. Gesammelte Abhandlungen (Springer-Verlag, 1968), pp. 3877.Google Scholar
[7]Hawkins, T.. The origins of the theory of group characters. Arch. Hist. Exact Sci. 7 (1971), 142170.CrossRefGoogle Scholar
[8]Hawkins, T.. New light on Frobenius' creation of the theory of group characters. Arch. Hist. Exact Sci. 12 (1974), 217243.CrossRefGoogle Scholar
[9]Hoehnke, H.-J.. Über Beziehungen zwischen Probleme von H. Brandt aus der Theorie der Algebren und den Automorphismen der Normenform. Math. Nachr. 34 (1967), 229255.CrossRefGoogle Scholar
[10]Jordan, C.. Mémoire sur les equations différentiates linéaires à intégrate algébrique. J. Reine Angew. Math. 84 (1878), 89215.Google Scholar
[11]Sandling, R.. The isomorphism problem for group rings: a survey. In Orders and Their Applications, Lecture Notes in Math. vol. 1142 (Springer-Verlag, 1985), pp. 256288.CrossRefGoogle Scholar
[12]Stanley, R. P.. Invariants of finite groups and their applications to combinatorics. Bull. Amer. Math. Soc. (N.S.) 1 (1979), 475511.CrossRefGoogle Scholar
[13]Weber, H.. Lehrbuch der Algebra, vol. 2 (Vieweg & Son, 1899).Google Scholar