Published online by Cambridge University Press: 24 October 2008
The requirements of Kolmogoroff's theory of the equilibrium spectrum are satisfied only at very high Reynolds numbers, higher than any at which experiments have yet been done. In particular, when the theory holds, the rate of decay of the mean-square vorticity ω must be negligible compared with either its rate of increase due to the stretching of the vortex filaments or the rate of dissipation due to viscosity.
An extended version of Kolmogoroff's hypothesis may be proposed, in which the statistical properties of the turbulence in a range of wave-numbers (range of eddy sizes) depend not only on the rate of dissipation ∈ per unit volume and the viscosity ν, but also on the time rate of change d∈/dt of ∈. The result is to introduce a dependence on the Reynolds number R of the turbulence into quantities and constants which, on Kolmogoroff's original hypothesis, were independent of R. The Reynolds number R is defined from the decay law; u2t, with an origin of time suitably chosen, is a function of t, finite when t = 0, and R is defined as (u2t)t=0/ν. Lin's decay law follows logically from the extended hypothesis, according to which the rates of change of ω−1, due to the causes mentioned above, are constant during the decay; Lin's decay law would also follow if this less general part only of the extended hypothesis be assumed. The same decay law is also obtained if the similarity spectrum of Heisenberg is taken to apply not to the whole of the energy-bearing eddies, but only to the energy-dissipating eddies. But it is suggested that further generalization of the theory of the similarity spectrum, and of the decay law, is necessary; that the similarity spectrum is probably only asymptotically correct for a range of large wave-numbers, the range depending on the initial conditions and decreasing as the decay proceeds; that the general decay law is u2t = μRd(t), where d(t) is an integral function of t, such that d(0) = 1, and with an asymptotic value for large t to give correctly the law of decay in the final period; and that d(t), and the number of constants needed to specify it approximately, depend on the initial conditions. An experiment is suggested to test the dependence of the law of decay on the initial conditions. It is also suggested that the recently observed constancy of u2t in the initial period in the turbulence behind a single grid is only approximate, and this approximate constancy still needs explanation. Remarks are also included on the range of application of the equilibrium spectrum, for which some formulae are given when there is a definite cut-off in the spectrum.