Published online by Cambridge University Press: 10 May 2010
Let K be a convex body which is (i) symmetric with respect to each of the coordinate hyperplanes and (ii) in isotropic position. We prove that most linear functionals acting on K exhibit super-Gaussian tail behavior. Using known facts about the mean-width of such bodies, we then deduce strong lower bounds for the volume of certain caps. We also prove a converse statement. Namely, if an arbitrary isotropic convex body (not necessarily satisfying (i)) exhibits similar cap-behavior, then one can bound its mean-width.