Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T08:38:16.423Z Has data issue: false hasContentIssue false

Orthomorphisms of archimedean vector lattices

Published online by Cambridge University Press:  24 October 2008

S. J. Bernau
Affiliation:
University of Texas at Austin, Texas, U.S.A.

Abstract

A linear operator T on a vector lattice L preserves disjointness if Txy whenever xy. If such a T is positive it is automatically order bounded. An ortho-morphism is an order bounded disjointness preserving linear operator on L. In this note we show that the theory of orthomorphisms on archimedean vector lattices admits a totally elementary exposition. Elementary methods are also effective in duality considerations when the order dual separates points of L. For the Jordan decomposition T = T+T with T+x = (Tx+)+ − (Tx)+ we can dtrop the order boundedness assumption if we assume either that T preserves ideals or that L is normed and T is continuous. Alternatively we may keep order boundedness and assume only |Tx| ⊥ |Ty| whenever xy. The main duality results show: T preserves ideals if and only if T** does; T is an orthomorphism if and only if T* is; T is central (|T| is bounded by a multiple of the identity) if and only if T* is central if and only if T and T* preserve ideals.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1)Bernau, S. J.Unique representation of archimedean lattice groups and normal archimedean lattice rings. Proc. London Math. Soc. (3) 15 (1965), 599631.CrossRefGoogle Scholar
(2)Bigard, A. and Keimel, K.Sur les endomorphismes conservant les polaires d'un groupe réticulé archimédien. Bull. Soc. Math. France 97 (1969), 381398.CrossRefGoogle Scholar
(3)Bigard, A.Les orthomorphismes d'un espace réticulé Archimédien. Indag. Math. 34 (1972), 236246.CrossRefGoogle Scholar
(4)Buck, R. C.Multiplication operators. Pacific J. Math. 11 (1961), 95104.CrossRefGoogle Scholar
(5)Conrad, P. F. and Diem, J. E.The ring of polar preserving endomorphisms of an abelian lattice ordered group. Illinois J. Math. 15 (1971), 224240.CrossRefGoogle Scholar
(6)Fremlin, D. H.Abstract Köthe spaces II. Proc. Cambridge Philos.Soc. 63 (1967), 951956.CrossRefGoogle Scholar
(7)Nakano, H.Modern Spectral Theory. Maruzen (Tokyo, 1950).Google Scholar
(8)Meyer, M.Le stabilisateur d'un espace vectoriel réticulé. C.R. Acad. Sci. Paris A 283 (1976), 249250.Google Scholar
(9)Meyer, M. Quelques propriétés des homomorphismes d'espaces vectoriels réticulé Preprint, 1979.Google Scholar
(10)Wickstead, A. W.Representation and duality of multiplication operators on Riesz spaces. Compositio Math. 35 (1977), 225238.Google Scholar
(11)Wickstead, A. W.The structure space of a Banach lattice. J. Math. Pures et Appl. 56 (1977), 3954.Google Scholar