Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T06:52:33.419Z Has data issue: false hasContentIssue false

The Pompeiu problem for groups

Published online by Cambridge University Press:  24 October 2008

Alan L. Carey
Affiliation:
Department of Pure Mathematics, University of Adelaide, Adelaide Sit 5001, Australia
Eberhard Kaniuth
Affiliation:
Fachbereich Mathematik/informatik, Universität Paderborn, D-4790 Paderborn, Federal Republic of Germany
William Moran
Affiliation:
Department of Pure Mathematics, University of Adelaide, Adelaide SA 5001, Australia

Extract

The Pompeiu problem has its origins in classical analysis in ℝn (see [2, 3, 4, 8] for a discussion and some history). In this context it may be stated as follows. Let D ⊂ ℝn be a bounded measurable set of positive Lebesgue measure and f a locally integrable function on ℝn. Then, if ∫σ(D)f = 0 for all rigid motions σ of ℝn, is f = 0?

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Bagchi, S. C. and Sitabam, A.. Determining sets for measures on ℝn. Illinoìs J. Math. 26 (1982), 419422.Google Scholar
[2]Berenstein, C. A.. An inverse spectral theorem and its relation to the Pompeiu problem. J. Analyse Math. 37 (1980), 128144.CrossRefGoogle Scholar
[3]Berenstein, C. A. and Shahshahani, M.. Harmonic analysis and the Pompeiu problem. Amer. J.Math. 105 (1983), 12171229.CrossRefGoogle Scholar
[4]Berenstein, C. A. and Zalcman, L.. The Pompeiu problem in symmetric spaces. Comment. Math. Helv. 55 (1980), 593621.Google Scholar
[5]Blattner, R. J.. On induced representations. Amer. J. Math. 83 (1961), 7998.CrossRefGoogle Scholar
[6]Boidol, J., Leptin, H., Schürmann, F. and Vahle, D.. Räume primitiver Ideale von Gruppenalgebren. Math. Ann. 236 (1978), 113.CrossRefGoogle Scholar
[7]Bredon, G. E.. Introduction to Compact Transformation Groups (Academic Press, 1972).Google Scholar
[8]Brown, L., Schreiber, B. M. and Taylor, B. A.. Spectral synthesis and the Pompeiu problem. Ann. Inst. Fourier (Grenoble) 23 (1973), 125154.CrossRefGoogle Scholar
[9]Dixmier, J.. Les C*-algèbres et leurs Représentations (Gauthier-Villars, 1964).Google Scholar
[10]Feldman, J. and Greenleaf, F. P.. Existence of Borel transversals in groups. Pacific J. Math. 25 (1968), 455461.CrossRefGoogle Scholar
[11]Fell, J. M. G.. Weak containment and induced representations. II. Trans. Amer. Math. Soc. 110 (1964), 424447.Google Scholar
[12]Fell, J. M. G.. A Hausdorff topology on the closed subsets of a locally compact non-Hausdorff space. Proc. Amer. Math. Soc. 13 (1962), 472476.CrossRefGoogle Scholar
[13]Glimm, J.. Locally compact transformation groups. Trans. Amer. Math. Soc. 101 (1961), 124138.CrossRefGoogle Scholar
[14]Gluškov, V. M.. Locally nilpotent locally bicompact groups (in Russian). Trudy Moskov. Mat. Obshch. 4 (1955), 291332.Google Scholar
[15]Green, P.. The local structure of twisted covariance algebras. Acta Math. 140 (1978), 191250.CrossRefGoogle Scholar
[16]Grosser, S. and Moskowitz, M.. Compactness conditions in topological groups. J. Reine Angew.Math. 246 (1971), 140.Google Scholar
[17]Hauenschild, W.. Zur Darstellungstheorie von SIN-Gruppen. Math. Ann. 210 (1974), 257276.CrossRefGoogle Scholar
[18]Hochschild, G.. The Structure of Lie Groups (Holden-Day, 1965).Google Scholar
[19]Kaniuth, E.. On maximal ideals in group algebras of SIN-groups. Math. Ann. 214 (1975), 167175.CrossRefGoogle Scholar
[20]Ludwig, J.. Good ideals in the group algebra of a nilpotent Lie group. Math. Z. 161 (1978), 195210.CrossRefGoogle Scholar
[21]Mosak, R.. The L 1- and C*-algebras of -groups and their representations. Trans. Amer. Math. Soc. 163 (1972), 277310.Google Scholar
[22]Rana, I. K.. Determination of probability measures through group actions. Z. Wahrsch. Verw. Gebiete 53 (1980), 197206.CrossRefGoogle Scholar
[23]Rieffel, M. A.. Applications of strong Morita equivalence to transformation group C*-algebras. Proc. Symposia Pure Math. 38 (1982), 299309.CrossRefGoogle Scholar
[24]Scott, D. and Sitaram, A.. Some remarks on the Pompeiu problem for groups. Proc. Amer. Math. Soc. 104 (1988), 12611266.CrossRefGoogle Scholar
[25]Thoma, E.. Über das reguläre Mass im dualen Raum diskreter Gruppen. Math. Z. 100 (1967), 257271.CrossRefGoogle Scholar
[26]Weit, Y.. On P-sets for group algebras of semi-direct products of abelian groups. (Preprint.)Google Scholar
[27]Williams, D. P.. The topology on the primitive ideal space of transformation group C*-algebras. Trans. Amer. Math. Soc. 266 (1981), 335359.Google Scholar
[28]Zalcman, L.. Offbeat integral geometry. Amer. Math. Monthly 87 (1980), 161175.CrossRefGoogle Scholar