Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T07:12:04.205Z Has data issue: false hasContentIssue false

Positive definite functions on spheres

Published online by Cambridge University Press:  24 October 2008

N. H. Bingham
Affiliation:
Westfield College, London

Extract

Positive definite functions on metric spaces were considered by Schoenberg (26). We write σk for the unit hypersphere in (k + 1)-space; then σk is a metric space under geodesic distance. The functions which are positive definite (p.d.) on σk were characterized by Schoenberg (27), who also obtained a necessary condition for a function to be p.d. on the it sphere σ∞ in Hilbert space. We extend this result by showing that Schoenberg's necessary condition for a function to be p.d. on σ∞ is also sufficient.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Askey, R. and Fitch, J.Integral representations for Jacobi polynomials, and some applications. J. Math. Anal. Appl. 26 (1969), 411437.CrossRefGoogle Scholar
(2)Bingham, N. H.Factorisation theorems and domains of attraction for generalised con-volution algebras. Proc. London Math. Soc. 23 (1971), 1630.CrossRefGoogle Scholar
(3)Bingham, N. H.Random walk on spheres. Z. Wahrscheinlichkeitsth eorie und Verw. Gabiete 22 (1972), 169192.CrossRefGoogle Scholar
(4)Bingham, N. H.Integral representations for ultraspherical polynomials. To appear in J. London Math. Soc.Google Scholar
(5)Bochner, S.Positive zonal functions on spheres. Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 11411147.CrossRefGoogle ScholarPubMed
(6)Cartan, E.Sur la détermination d'un systàme orthogonal complàte dans un espace de Riemann symmetrique clos. Rend. Circ. Mat. Palermo 53 (1929), 217252.CrossRefGoogle Scholar
(7)Davidson, R.Arithmetic and other properties of certain Delphic semigroups, I and II. Z. Wahrsheinlichkeitstheorie und Verw. Gebeite 10 (1968), 120145 and 146172.CrossRefGoogle Scholar
(8)Dougall, J.A theorem of Sonine in Bessel functions, with two extensions to spherical harmonics. Proc. Edinburgh Math. Soc. 37 (1919), 3347.CrossRefGoogle Scholar
(9)Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G.Higher transcendental functions. Bateman Manuscript Project (New York; McGraw-Hill, 1955).Google Scholar
(10)Gangolli, R.Isotropic infinitely-divisible measures on symmetric spaces. Acta Math. 111 (1964), 213246.CrossRefGoogle Scholar
(11)Gangolli, R. Abstract harmonic analysis and Levy's Brownian motion of several para-meters. Proc. Fifth Berkeley Symposium on Mathematical Statistics and Probability Theory (University of California Press, Berkeley, 1965/1966).Google Scholar
(12)Gangolli, R.Positive definite kernels on certain homogeneous spaces, and certain stochastic processes related to Lévy's Brownian motion of several parameters. Ann. Inst. H. Poincaré NS(B) 3 (1967), 121225.Google Scholar
(13)Godement, R.Introduction aux travaux de A. Selberg. Seminaire Bourbaki No. 144 (1957).Google Scholar
(14)Helgason, S.Differential geometry and symmetric spaces (New York; Academic Press, 1962).Google Scholar
(15)Hsu, H.-Y.Certain integrals and infinite series involving ultraspherical polynomials and Bessel functions. Duke Math. J. 4 (1938), 374383.CrossRefGoogle Scholar
(16)Kendall, D.G. Delphic semigroups, infinitely-divisible regenerative phenomena and the arithmetic of p-functions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 9 (1968), 163195.Google Scholar
(17)Kennedy, M.A stochastic process associated with the ultraspherical polynomials. Proc. Roy. Irish A. Sect. A 61 (1961), 89100.Google Scholar
(18)Khintchine, A. YA.The arithmetic of distribution laws. Bull. Univ. État Moscou Sér. A Sect. A 1 (1937), 617.Google Scholar
(19)Krein, M. G.Hermitian positive kernels on homogeneous spaces, I and II. American Math. Soc. Translations, series 2, vol. 34 (1963).Google Scholar
(20)Lamperti, J.The arithmetic of certain semigroups of positive operators. Proc. Cambridge Philos. Soc. 64 (1969), 161166.CrossRefGoogle Scholar
(21)Lévy, P.Processus stochastiques et mouvement Brownien (Paris; Gauthier-Villars, 1947).Google Scholar
(22)Lévy, P.Le mouvement brownien fonction d'un point de la sphere de Riemann. Rend. Circ. Mat. Palermo (ser. 2) 8 (1959), 297310.CrossRefGoogle Scholar
(23)Linnik, Yu. V.Decomposition of probability distributions (Edinburgh and London; Oliver and Boyd, 1964).Google Scholar
(24)Parthasarathy, K. R.Probability measures on metric spaces (New York, Academic Press, 1967).CrossRefGoogle Scholar
(25)Parthasarathy, K. R.Infinitely divisible representations and positive definite functions on a compact group. Comm. Math. Phys. 16 (1970), 148156.CrossRefGoogle Scholar
(26)Schoenberg, I. J.Metric spaces and positive definite functions. Trans. Amer. Math. Soc. 44 (1938), 522536.CrossRefGoogle Scholar
(27)Schoenberg, I. J.Positive definite functions on spheres. Duke Math. J. 9 (1942), 96108.CrossRefGoogle Scholar
(28)Szego, G.Orthogonal Polynomials. American Math. Soc. Colloquium Publications No. 23Providence, R.I.,1959.Google Scholar
(29)Vilenkin, N. YA. Special Functions and the Theory of Group Representations. Translations of Mathematical Monographs, Vol. 22 (1968).Google Scholar
(30)Watson, G. N.A treatise on Bessel functions, Second Edition (Cambridge University Press, 1966).Google Scholar