Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T00:47:09.408Z Has data issue: false hasContentIssue false

Regulator of modular units and Mahler measures

Published online by Cambridge University Press:  02 January 2014

WADIM ZUDILIN*
Affiliation:
School of Mathematical and Physical Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia. e-mail: wzudilin@gmail.com

Abstract

We present a proof of the formula, due to Mellit and Brunault, which evaluates an integral of the regulator of two modular units to the value of the L-series of a modular form of weight 2 at s=2. Applications of the formula to computing Mahler measures are discussed.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Baker, M. H., González–Jiménez, E., González, J. and Poonen, B.Finiteness results for modular curves of genus at least 2. Amer. J. Math. 127 (2005), 13251387.Google Scholar
[2]Bertin, M. J.Mesure de Mahler dune famille de polynômes. J. Reine Angew. Math. 569 (2004), 175188.Google Scholar
[3]Boyd, D.Mahler's measure and special values of L-functions. Experiment. Math. 7 (1998), 3782.Google Scholar
[4]Boyd, D. Mahler's measure and L-functions of elliptic curves evaluated at s=3, slides from a lecture at the SFU/UBC number theory seminar (7 December 2006), http://www.math.ubc.ca~boyd/sfu06.ed.pdf.Google Scholar
[5]Brunault, F.Beilinson–Kato elements in K 2 of modular curves. Acta Arith. 134 (2008), 283298.Google Scholar
[6]Condon, J. D. Mahler measure evaluations in terms of polylogarithms. Dissertation. The University of Texas at Austin (2004).Google Scholar
[7]Deninger, C.Deligne periods of mixed motives, K-theory and the entropy of certain $\mathbb Z^n$-actions. J. Amer. Math. Soc. 10 (1997), 259281.Google Scholar
[8]Katz, N. M.p-adic interpolation of real analytic Eisenstein series. Ann. of Math., Ser. (2) 104 (1976), 459571.CrossRefGoogle Scholar
[9]Lalín, M. N.On a conjecture by Boyd. Intern. J. Number Theory 6 (2010), 705711.Google Scholar
[10]Lalín, M. N. and Rogers, M. D.Functional equations for Mahler measures of genus-one curves. Algebra and Number Theory 1 (2007), 87117.CrossRefGoogle Scholar
[11]Mellit, A.Mahler measures and q-series. In Explicit Methods in Number Theory (MFO, Oberwolfach, Germany, 17–23 July 2011), Oberwolfach Reports 8 (2011), no. 3, 19901991.Google Scholar
[12]Mellit, A. Regulator of two modular units formula, unpublished note (12 June 2012).Google Scholar
[13]Rodriguez Villegas, F.Modular Mahler measures. I. In Topics in Number Theory (University Park, PA, 1997), Math. Appl. 467 (Kluwer Academic Publisher, Dordrecht, 1999), 1748.Google Scholar
[14]Rogers, M. and Zudilin, W.From L-series of elliptic curves to Mahler measures. Compositio Math. 148 (2012), 385414.Google Scholar
[15]Rogers, M. and Zudilin, W.On the Mahler measure of 1+X+1/X+Y+1/Y. Internat. Math. Res. Not., to appear; doi: 10.1093/imrn/rns285.Google Scholar
[16]Schoeneberg, B.Elliptic modular functions: an introduction, translated from the German by Smart, J. R. and Schwandt, E. A. Die Grundlehren der mathematischen Wissenschaften 203 (Springer-Verlag, 1974).Google Scholar
[17]Yang, Y.Transformation formulas for generalized Dedekind eta functions. Bull. London Math. Soc. 36 (2004), 671682.Google Scholar
[18]Zudilin, W.Period(d)ness of L-values. In Number Theory and Related Fields, in memory of Alf van der Poorten, Borwein, J. M.et al. (eds.). Springer Proceedings in Math. Stat. 43 (Springer, New York, 2013), 381395.Google Scholar