Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T06:40:48.377Z Has data issue: false hasContentIssue false

The Resultant of Two Fourier Kernels

Published online by Cambridge University Press:  24 October 2008

G. H. Hardy
Affiliation:
Trinity College

Extract

1. A “Fourier kernel” means here a function K(x) which gives rise to a formula

of the Fourier type. Thus

are Fourier kernels. If K(x) is a Fourier kernel, λ is real, and a positive, then

are Fourier kernels.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1935

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Hardy, G. H., “Notes on some points in the integral calculus (LXIII)”, Messenger of Math. 56 (1927), 186–92.Google Scholar
(2)Hardy, G. H. and Titchmarsh, E. C., “A class of Fourier kernels”, Proc. London Math. Soc. (2), 35 (1933), 116–55.CrossRefGoogle Scholar
(3)Plancherel, M., “Sur les formules de réciprocité du type de Fourier”, Journal London Math. Soc. 8 (1933), 220–26.Google Scholar
(4)Titchmarsh, E. C., “A proof of a theorem of Watson”, Journal London Math. Soc. 8 (1933), 217–20.CrossRefGoogle Scholar
(5)Watson, G. N., Theory of Bessel functions, Cambridge, 1922.Google Scholar
(6)Watson, G. N., “General transforms”, Proc. London Math. Soc. (2), 35 (1933), 156–99.Google Scholar