Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T08:52:03.188Z Has data issue: false hasContentIssue false

Riesz and Valiron means and fractional moments

Published online by Cambridge University Press:  24 October 2008

N. H. Bingham
Affiliation:
Royal Holloway and Bedford New College, University of London
G. Tenenbaum
Affiliation:
University of Nancy I

Extract

We shall be concerned here with two classical families of summability methods, and with links between them, together with applications in probability theory and elsewhere.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Agnew, R. P.. On deferred Cesàro means. Ann. of Math. (2) 33 (1932), 413421.CrossRefGoogle Scholar
[2]Baum, L. E. and Katz, M.. Convergence rates in the law of large numbers. Trans. Amer. Math. Soc. 120 (1965), 108123.CrossRefGoogle Scholar
[3]Berbee, H. C. P.. Convergence rates in the strong law for bounded mixing sequences. Report MS-R8412, Amsterdam, 1984.Google Scholar
[4]Bingham, N. H.. Tauberian theorems and the central limit theorem. Ann. Probab. 9 (1981), 221231.CrossRefGoogle Scholar
[5]Bingham, N. H.. On Euler and Borel summability. J. London Math. Soc. (2) 29 (1984), 141146.CrossRefGoogle Scholar
[6]Bingham, N. H.. On Valiron and circle convergence. Math. Z. 186 (1984), 273286.CrossRefGoogle Scholar
[7]Bingham, N. H.. Tauberian theorems for summability methods of random-walk type. J. London Math. Soc. (2) 30 (1984), 281287.CrossRefGoogle Scholar
[8]Bingham, N. H.. On Tauberian theorems in probability theory. Nieuw. Arch. Wisk. (4) 3·2 (1985).Google Scholar
[9]Bingham, N. H. and Goldie, C. M.. On one-sided Tauberian conditions. Analysis 3 (1983), 159188.CrossRefGoogle Scholar
[10]Bingham, N. H. and Maejima, M.. Summability methods and almost-sure convergence. Z. Wahrsch. Verw. Gebiete 68 (1985), 383392.CrossRefGoogle Scholar
[11]Borwein, D.. On methods of summability based on integral functions, I, II. Proc. Cambridge Philos. Soc. 55 (1959), 2330; 56 (1960), 125–131.CrossRefGoogle Scholar
[12]Chandrasekharan, K. and Minakshisundaram, S.. Typical Means (Oxford University Press, 1952).Google Scholar
[13]Chow, Y. S.. Delayed sums and Borel summability of independent, identically distributed random variables. Bull. Inst. Math. Acad. Sinica 1 (1973), 207220.Google Scholar
[14]Embrechts, P. and Maejima, M.. The central limit theorem for summability methods of i.i.d. random variables. Z. Wahrsch. Verw. Gebiete 68 (1984), 191204.CrossRefGoogle Scholar
[15]Erdös, P.. Remark on my paper ‘On a theorem of Hsu and Robbins’. Ann. Math. Statist. 21 (1950), 138.CrossRefGoogle Scholar
[16]Hardy, G. H.. The second consistency theorem for summable series. Proc. London Math. Soc. (2) 15 (1916), 7288. (Collected Works of G. H. Hardy, vol. vi, pp. 588–605, Oxford University Press, 1974.)Google Scholar
[17]Hardy, G. H.. Divergent Series (Oxford University Press, 1949).Google Scholar
[18]Hardy, G. H. and Riesz, M.. The General Theory of Dirichlet Series (Cambridge University Press, 1952).Google Scholar
[19]Hardy, G. H. and Littlewood, J. E.. Theorems concerning the summability of series by Borel's exponential method. Rend. Circ. Mat. Palermo (2) 41 (1916), 3653 (Works, vol. VI, pp. 609–628).CrossRefGoogle Scholar
[20]Hardy, G. H. and Littlewood, J. E.. Some new convergence criteria for Fourier series. Ann. Soc. Norm. Sup. Pisa (2) 3 (1934), 120 (Works, vol. III·1a, pp. 68–88, Oxford University Press, 1969).Google Scholar
[21]Hipp, C.. Convergence rates in the strong law for stationary mixing sequences. Z. Wahrsch. Verw. Gebiete 49 (1979), 4962.CrossRefGoogle Scholar
[22]Hirst, K. A.. On the second theorem of consistency in the theory of summation by typical means. Proc. London Math. Soc. (2) 22 (1932), 353366.CrossRefGoogle Scholar
[23]Hyslop, J. M.. On the summability of series by a method of Valiron. Proc. Edinburgh Math. Soc. (2) 4 (1936), 218223.CrossRefGoogle Scholar
[24]Kabamata, J.. Allgemeine Umkehrsätze der Limitierungsverfahren. Abh. Math. Sem. Hansischen Univ. 12 (1938), 4863.CrossRefGoogle Scholar
[25]Kuttner, B.. Note on the ‘second theorem of consistency’ for Riesz summability, I, II. J. London Math. Soc. 26 (1951), 104111; 27 (1952), 207–217.CrossRefGoogle Scholar
[26]Lai, T. L.. On Strassen-type laws of the iterated logarithm for delayed averages of the Wiener process. Bull. Inst. Math. Acad. Sinica 1 (1973), 2939.Google Scholar
[27]Lai, T. L.. Limit theorems for delayed sums. Ann. Probab. 2 (1974), 432440.CrossRefGoogle Scholar
[28]Lai, T. L.. Summability methods for independent identically distributed random variables. Proc. Amer. Math. Soc. 45 (1974), 253261.Google Scholar
[29]Lai, T. L.. Convergence rates and r-quick versions of the strong law for stationary mixing sequences. Ann. Probab. 5 (1977), 693706.CrossRefGoogle Scholar
[30]Meyer-König, W.. Untersuchungen ¨ber einige verwandten Limitierungsverfahren. Math. Z. 52 (1949), 257304.CrossRefGoogle Scholar
[31]Peligrad, M.. Convergence rates of the strong law for stationary ϕ-mixing sequences. Z. Wahrsch. Verw. Gebiete 70 (1985), 307314.CrossRefGoogle Scholar
[32]Schmetterer, L.. Taubersche Sätze und trigonometrische Reihen. Österreich Akad. Wiss. Math.-Natur. Kl. Sitzungsber. IIa 158 (1950), 3759.Google Scholar
[33]Spitzer, F.. A combinatorial lemma and its application to probability theory. Trans. Amer. Math. Soc. 82 (1956), 323339.CrossRefGoogle Scholar
[34]Tenenbaum, G.. Sur le procédé de sommation de Borel et la répartition du nombre des facteurs premiers des entiers. Enseign. Math. 26 (1980), 225245.Google Scholar
[35]Valiron, G.. Remarques sur la sommation des séries divergentes par les méthodes de M. Borel. Rend. Circ. Mat. Palermo 42 (1917), 267284.CrossRefGoogle Scholar
[36]Wiener, N. and Martin, W. T.. Taylor series of entire functions of smooth growth. Duke Math. J. 3 (1937), 213223.CrossRefGoogle Scholar