Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T05:22:01.487Z Has data issue: false hasContentIssue false

Safe numerical bounds for the Titchmarsh–Weyl m(λ)-function

Published online by Cambridge University Press:  24 October 2008

B. M. Brown
Affiliation:
Department of Computing Mathematics, University of Wales College of Cardiff, Senghennydd Road, Cardiff CF2 4YV
V. G. Kirby
Affiliation:
Department of Computing Mathematics, University of Wales College of Cardiff, Senghennydd Road, Cardiff CF2 4YV
W. D. Evans
Affiliation:
School of Mathematics, University of Wales College of Cardiff, Senghennydd Road, Cardiff CF2 4AG
M. Plum
Affiliation:
Technische Universität Clausthal, Institut für Mathematik, Erzstr. 1. W-3392 Clausthal-Zellerfeld

Abstract

Recent efforts have been focused on using numerical methods to estimate the Titchmarsh–Weyl m-coefficient. In this paper we look at interval analytic methods to provide provable bounds for these values.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Alefeld, G. and Herzbebger, J.. Introduction to Interval Computations (Academic Press, 1983).Google Scholar
[2]Atkinson, F. V.. On the location of the Weyl circles. Proc. Roy. Soc. Edinburgh Sect. A 88 (1981), 345356.CrossRefGoogle Scholar
[3]Bennewitz, C. and Everitt, W. N.. Some remarks on the Titchmarsh–Weyl m-coefficient. A Tribute to Ake Pleijel. Proceedings of the Pleijel Conference, Uppsala (Department of Mathematics, University of Uppsala, 1979), pp. 49108.Google Scholar
[4]Brown, B. M., Kirby, V. G. and Pryce, J. D.. Numerical determination of the Titchmarsh–Weyl m-coefficient and its applications to HELP inequalities. Proc. Roy. Soc. London Ser. A 426 (1989), 167188.Google Scholar
[5]Brown, B. M., Kirby, V. G. and Pryce, J. D.. A numerical method for the determination of the Titchmarsh–Weyl m-coefficient. Proc. Roy. Soc. London Ser. A 435 (1991), 535549.Google Scholar
[6]Coddington, E. A. and Levinson, N.. Theory of Ordinary Differential Equations (McGraw-Hill, 1955).Google Scholar
[7]Chaudhuri, J. and Everitt, W. N.. On the spectrum of ordinary second order differential operators. Proc. Roy. Soc. London Ser. A 68 (1969), 95119.Google Scholar
[8]Evans, W. D. and Everitt, W. N.. A return to the Hardy–Littlewood inequality. Proc. Roy. Soc. London Ser. A 380 (1982), 447486.Google Scholar
[9]Evans, W. D., Everitt, W. N., Hayman, W. K. and Ruscheweyh, S.. On a class of integral inequalities of Hardy–Littlewood type J. Analyse Math. 46 (1986), 118147.CrossRefGoogle Scholar
[10]Evans, W. D. and Everitt, W. N.. Hardy–Littlewood integral inequalities. In Inequalities: Fifty Years on from Hardy, Littlewood and Pólya, Lecture Notes in Pure and Appl. Math. vol. 129 (Dekker, 1991).Google Scholar
[11]Everitt, W. N.. On an extension to an integro-differential inequality of Hardy, Littlewood and Pólya. Proc. Roy. Soc. Edinburgh Sect. A 69 (1971/1972), 295333.Google Scholar
[12]Hardy, G. H. and Littlewood, J. E.. Some inequalities connected with the calculus of variations. Quart. J. Math. Oxford Ser. (2) 3 (1932), 241252.CrossRefGoogle Scholar
[13]Hardy, G. H., Littlewood, J. E. and Pólya, G.. Inequalities (Cambridge University Press, 1934).Google Scholar
[14]Kirby, V. G.. A numerical method for determining the Titchmarsh–Weyl m-coefficient and its applications to certain integro-differential inequalities. Ph.D. Thesis, University of Wales College of Cardiff (1990).Google Scholar
[15]Kuki, H.. Complex gamma function with error control. Comm. ACM 15 (1972) 262267.CrossRefGoogle Scholar
[16]Kulisch, U. and Miranker, W. L.. Computer Arithmetic in Theory and Practice (Academic Press, 1981).Google Scholar
[17]Kulisch, U. and Miranker, W. L. (editors). A New Approach to Scientific Computation (Academic Press, 1983).Google Scholar
[18]Lohner, R.. Einschlieβung der Lösung gewöhnlicher Anfangs- und Randwertaufgaben und Anwendungen. Dissertation, Institut für Angewandte Mathematik Universität Karlsruhe (1988).Google Scholar
[19]Lohner, R.. Enclosing the solutions of Ordinary Initial and Boundary Value Problems. In Computer Arithmetic, Scientific Computation and Programming Languages (B. G. Teubner, 1987).Google Scholar
[20]Naimark, M. A.. Linear Differential Operators, Part 2 (Ungar, 1968).Google Scholar
[21]Thompson, I. J. and Barnett, A. R.. Modified Bessel functions Ip(z) and Kp(z) of real order and complex argument, to selected accuracy. Comput. Phys. Comm. 47 (1987), 245257.CrossRefGoogle Scholar
[22]Titchmarsh, E. C.. On expansions in eigenfunctions (IV). Quart. J. Math. Oxford Ser. (2) 12 (1941), 3350.CrossRefGoogle Scholar
[23]Titchmarsh, E. C.. On expansions in eigenfunctions (VII). Quart. J. Math. Oxford Ser. (2) 16 (1945), 103114.CrossRefGoogle Scholar
[24]Titchmarsh, E. C.. Eigenfunction expansions, Part 1, 2nd edn. (Oxford University Press, 1962).Google Scholar
[25]Weyl, H.. Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen. Math. Ann. 68 (1910), 220269.CrossRefGoogle Scholar