Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-16T11:59:46.260Z Has data issue: false hasContentIssue false

Scattering from infinite sheets

Published online by Cambridge University Press:  24 October 2008

E. B. Davies
Affiliation:
Mathematical Institute, Oxford

Abstract

We prove the existence and completeness of the wave operators for quantum-mechanical scattering by a potential which does not decrease to zero at infinity in two of the three space directions. We also obtain a new abstract result concerning the continuous dependence of the wave operators on the potential.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Dixmier, J.Les algèbres d'operateurs dans l'espace hilbertien, 2nd edn (Paris: Gauthier-Villars, 1969).Google Scholar
(2)Eastham, M. S. P.The spectral theory of periodic differential equations (Scottish Acad. Press, 1973).Google Scholar
(3)Hörmander, L.The existence of wave operators in scattering theory. Math. Z. 146 (1976), 6991.CrossRefGoogle Scholar
(4)Hunziker, W.Cluster properties of multiparticle systems. J. Math. Phys 6 (1965), 610.CrossRefGoogle Scholar
(5)Kato, T.Perturbation theory for linear operators (Springer, 1966).Google Scholar
(6)Kato, T.Schrödinger operators with singular potentials. Israel J. Math. 13 (1972), 135148.CrossRefGoogle Scholar
(7)Kato, T. and Kuroda, S. T.A remark on unitarity property of the scattering operator. Nuovo Cimento 14 (1959), 11021107.CrossRefGoogle Scholar
(8)Kupsch, J. and Sandhas, W.Møller operators for scattering on singular potentials. Comm. Math. Phys. 2 (1966), 147154.CrossRefGoogle Scholar
(9)Kuroda, S. T.On the existence and the unitarity property of the scattering operator. Nuovo Cimento 12 (1959), 431454.CrossRefGoogle Scholar
(10)Schechter, M.Spectral properties of partial differential operators (North-Holland Publ. Co., 1971).Google Scholar
(11)Simon, B.Quantum mechanics for Hamiltonians defined as quadratic forma (Princeton Univ. Press, 1971).Google Scholar