Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T20:44:42.527Z Has data issue: false hasContentIssue false

Sharp inequalities for trigonometric sums

Published online by Cambridge University Press:  10 March 2003

HORST ALZER
Affiliation:
Morsbacher Str. 10, 51545 Waldbröl, Germany. e-mail: alzer@wmax03.mathematik.uni-wuerzburg.de
STAMATIS KOUMANDOS
Affiliation:
Department of Mathematics and Statistics, The University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus. e-mail: skoumand@pythagoras.mas.ucy.ac.cy

Abstract

We prove the following two theorems:

(I) Let $n \geqslant 1$ be a (fixed) integer. Then we have for $\theta \in (0, \pi)$: \[ \sum\limits^n_{k=1}\frac{\cos (k\theta)}{k}\leqslant -\log\left(\sin\left(\frac{\theta}{2}\right)\right)+\frac{\pi-\theta}{2}+\sigma_n, \] with the best possible constant $\sigma_n = \sum\nolimits^n_{k=1}(-1)^k/k$.

(II) For even integers $n \geqslant 2$ and for $\theta \in (0, \pi)$ we have \[ \sum\limits^n_{k=1}\frac{\sin(k\theta)}{k}\leqslant\alpha(\pi-\theta), \] with the best possible constant $\alpha = 0.66 395\ldots$.

Our results refine inequalities due to C. Hyltén-Cavallius ‘11’ and P. Turán ‘23’, respectively.

Type
Research Article
Copyright
2003 Cambridge Philosophical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)