Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-19T02:14:13.822Z Has data issue: false hasContentIssue false

The skein polynomial of a planar star product of two links

Published online by Cambridge University Press:  28 June 2011

Kunio Murasugi
Affiliation:
Department of Mathematics, University of Toronto, Toronto, Canada M5S 1A1
Jozef H. Przytycki
Affiliation:
Department of Mathematics, Warsaw University, Warsaw, Poland 00901

Abstract

If PL(v,z) = Σbi(v)zi is the skein polynomial of a link L, and D = D1 * D2 is the diagram which is a planar star (Murasugi) product of D1 and D2 then bϕ(D)(v) = bϕ(D1)·bϕ(D2)(v) where ϕ(D) = n(D)– (s(D) – 1) and n(D) denotes the number of crossings of D, and s(D) is the number of Seifert circles of D.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Boileau, M. and Weber, C.. Le problème de J. Milnor sur le nombre gordien des noeuds algébraiques. Enseign. Math. (2) 31 (1983), 4998.Google Scholar
[2] Cromwell, P. R.. Homogeneous links. (Preprint, 1987.)Google Scholar
[3] Freyd, P., Yetter, D., Hoste, J., Lickorish, W. B. R., Millett, K. and Ocneanu, A.. A new polynomial invariant of knots and links. Bull. Amer. Math. Soc. 12 (1985), 239249.CrossRefGoogle Scholar
[4] Kobayashi, K. and Kodama, K.. On the degzPL(v, z) for plumbing diagrams and oriented arborescent links. Kobe J. Math. 5 (1988), 221232.Google Scholar
[5] Milnor, J.. Singular Points of Complex Hypersurfaces. Ann. of Math. Studies no. 61 (Princeton University Press, 1968).Google Scholar
[6] Morton, H. R.. Seifert circles and knot polynomials. Math. Proc. Cambridge Philos. Soc. 99 (1986), 107109.CrossRefGoogle Scholar
[7] Murasugi, K.. On alternating knots. Osaka Math. J. 12 (1960), 277303.Google Scholar
[8] Murasugi, K.. On a certain numerical invariant of link types. Trans. Amer. Math. Soc. 117 (1965), 387422.CrossRefGoogle Scholar
[9] Przytycki, J. H.. Survey on recent invariants in classical knot theory. (Preprint, 1986.)Google Scholar
[10] Przytycki, J. H. and Traczyk, P.. Invariants of links of Conway type. Kobe J. Math. 4 (1987), 115139.Google Scholar
[11] Przytycki, J. H. and Traczyk, P.. Conway algebras and skein equivalence of links. (Preprint, 1985.)Google Scholar