Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-15T02:39:40.620Z Has data issue: false hasContentIssue false

Stability for the spherically symmetric Einstein–Vlasov system–a coercivity estimate

Published online by Cambridge University Press:  10 September 2013

MAHIR HADŽIĆ
Affiliation:
Massachusetts Institute of Technology, Department of Mathematics, Cambridge, MA 02139-4307, U.S.A. e-mail: hadzic@math.mit.edu
GERHARD REIN
Affiliation:
Mathematisches Institut der Universität BayreuthD-95440 Bayreuth, Germany. e-mail: gerhard.rein@uni-bayreuth.de

Abstract

The stability of static solutions of the spherically symmetric, asymptotically flat Einstein–Vlasov system is studied using a Hamiltonian approach based on energy-Casimir functionals. The main results are a coercivity estimate for the quadratic part of the expansion of the natural energy-Casimir functional about an isotropic steady state, and the linear stability of such steady states. The coercivity bound shows in a quantified way that this quadratic part is positive definite on a class of linearly dynamically accessible perturbations, provided the particle distribution of the steady state is a strictly decreasing function of the particle energy and provided the steady state is not too relativistic. In contrast to the stability theory for isotropic steady states of the gravitational Vlasov-Poisson system the monotonicity of the particle distribution alone does not determine the stability character of the state, a fact which was observed by Ze'ldovitch et al. in the 1960's. The result in an essential way exploits the non-linear structure of the Einstein equations satisfied by the steady state and is not just a perturbation result of the analogous coercivity bounds for the Newtonian case. It should be an essential step in a fully non-linear stability analysis for the Einstein–Vlasov system.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Andréasson, H.On static shells and the Buchdahl inequality for the spherically symmetric Einstein–Vlasov system. Commun. Math. Phys. 274 (2007), 409425.CrossRefGoogle Scholar
[2]Andréasson, H.The Einstein–Vlasov system/kinetic theory. Living Rev. Relativity 14, 4. URL (cited on 16.1.2012) (2011).CrossRefGoogle ScholarPubMed
[3]Andréasson, H., Kunze, M. and Rein, G.The formation of black holes in spherically symmetric gravitational collapse. Math. Ann. 350 (2011), 683705.CrossRefGoogle Scholar
[4]Andréasson, H., Kunze, M., and Rein, G.Existence of axially symmetric static solutions of the Einstein–Vlasov system. Commun. Math. Phys. 308 (2011), 2347.CrossRefGoogle Scholar
[5]Andréasson, H. and Rein, G.A numerical investigation of the stability of steady states and critical phenomena for the spherically symmetric Einstein–Vlasov system. Class. Quantum Grav. 23 (2006), 36593677.CrossRefGoogle Scholar
[6]Batt, J., Morrison, P. and Rein, G.Linear stability of stationary solutions of the Vlasov–Poisson system in three dimensions. Arch. Rational Mech. Anal. 130 (1995), 163182.CrossRefGoogle Scholar
[7]Guo, Y.Variational method in polytropic galaxies. Arch. Rational Mech. Anal. 150 (1999), 209224.CrossRefGoogle Scholar
[8]Guo, Y. and Lin, Z.Unstable and stable galaxy models. Commun. Math. Phys. 279 (2008), 789813.CrossRefGoogle Scholar
[9]Guo, Y. and Rein, G.Isotropic steady states in galactic dynamics. Commun. Math. Phys. 219 (2001), 607629.CrossRefGoogle Scholar
[10]Guo, Y. and Rein, G.A non-variational approach to nonlinear stability in stellar dynamics applied to the King model. Commun. Math. Phys. 271 (2007), 489509.CrossRefGoogle Scholar
[11]Hadžić, M. and Rein, G.Global existence and nonlinear stability for the relativistic Vlasov-Poisson system in the gravitational case. Indiana Univ. Math. J. 56 (2007), 24532488.CrossRefGoogle Scholar
[12]Ipser, J. and Thorne, K.Relativistic, spherically symmetric star clusters I. Stability theory for radial perturbations. Astrophys. J. 154 (1968), 251270.CrossRefGoogle Scholar
[13]Kandrup, H. and Morrison, P.Hamiltonian structure of the Vlasov-Einstein system and the problem of stability for spherical relativistic star clusters. Ann. Physics 225 (1993), 114166.CrossRefGoogle Scholar
[14]Kandrup, H. and Sygnet, J. F.A simple proof of dynamical stability for a class of spherical clusters. Astrophys. J. 298 (1985), 2733.CrossRefGoogle Scholar
[15]Lemou, M., Mehats, F., and Raphaël, P.Stable ground states for the relativistic gravitational Vlasov–Poisson system. Commun. Partial Differential Eqns. 34 (2009), 703721.CrossRefGoogle Scholar
[16]Lemou, M., Mehats, F., and Raphaël, P.A new variational approach to the stability of gravitational systems. Commun. Math. Phys. 302 (2011), 161224.CrossRefGoogle Scholar
[17]Lemou, M., Mehats, F. and Raphaël, P.Orbital stability of spherical systems. Inventiones Math. 187 (2012), 145194.CrossRefGoogle Scholar
[18]Mouhot, C. Stabilité orbitale pour le système de Vlasov–Poisson gravitationnel, d'après Lemou–Méhats–Raphaël, Guo, Lin, Rein et al. Séminaire Nicolas Bourbaki, Nov. 2011. arXiv:1201.2275 (2012).Google Scholar
[19]Rein, G.Static solutions of the spherically symmetric Vlasov–Einstein system. Math. Proc. Camb. Phil. Soc. 115 (1994), 559570.CrossRefGoogle Scholar
[20]Rein, G.The Vlasov–Einstein System with Surface Symmetry. (Habilitationsschrift, München 1995).Google Scholar
[21]Rein, G.Static shells for the Vlasov–Poisson and Vlasov–Einstein systems. Indiana Univ. Math. J. 48 (1999), 335346.CrossRefGoogle Scholar
[22]Rein, G.Collisionless kinetic equations from astrophysics—The Vlasov–Poisson system. In Handbook of Differential Equations, Evolutionary Equations Vol. 3 (2007), edited by Dafermos, C. M. and Feireisl, E., Elsevier.Google Scholar
[23]Rein, G. and Rendall, A.Global existence of solutions of the spherically symmetric Vlasov–Einstein system with small initial data. Commun. Math. Phys. 150 (1992), 561583. Erratum: Commun. Math. Phys. 176 (1996), 475–478.CrossRefGoogle Scholar
[24]Rein, G. and Rendall, A.The Newtomian limit of the spherically symmetric Vlasov–Einstein system. Commun. Math. Phys. 150 (1992), 585591.CrossRefGoogle Scholar
[25]Rein, G. and Rendall, A.Smooth static solutions of the spherically symmetric Vlasov–Einstein system. Ann. Inst. H. Poincaré, Physique Théorique 59 (1993), 383397.Google Scholar
[26]Rein, G. and Rendall, A.Compact support of spherically symmetric equilibria in non-relativistic and relativistic galactic dynamics. Math. Proc. Camb. Phil. Soc. 128 (2000), 363380.CrossRefGoogle Scholar
[27]Wang, Z., Guo, Y., Lin, Z. and Zhang, P. Unstable galaxy models. Preprint, http://arxiv.org/abs/1303.2988Google Scholar
[28]Wolansky, G.Static solutions of the Vlasov–Einstein system. Arch. Rational Mech. Anal. 156 (2001), 205230.CrossRefGoogle Scholar
[29]Zel'dovich, Ya. B. and Novikov, I. D.Relativistic Astrophysics, Vol 1 (Chicago University Press 1971).Google Scholar
[30]Zel'dovich, Ya. B. and Podurets, M. A.The evolution of a system of gravitationally interacting point masses. Soviet Astronomy–AJ 9 (1965), 742749. Translated from Astronomicheskii Zhurnal 42.Google Scholar