No CrossRef data available.
Published online by Cambridge University Press: 24 October 2008
Some general observations about stability of periodic solutions of Hamiltonian systems are presented as well as stability results for the periodic solutions that exist near a collision of pure imaginary eigenvalues. Let I = ∮ p dq be the action functional for a periodic orbit. The stability theory is based on the surprising result that changes in stability are associated with changes in the sign of dI / dw, where w is the frequency of the periodic orbit. A stability index based on dI / dw is defined and rigorously justified using Floquet theory and complete results for the stability (and instability) of periodic solutions near a collision of pure imaginary eigenvalues of opposite signature (the 1: – 1 resonance) are obtained.