Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T06:28:06.312Z Has data issue: false hasContentIssue false

Structure theorems for alternative H*-algebras

Published online by Cambridge University Press:  24 October 2008

Inma P. de Guzman
Affiliation:
Facultad de Ciencias, Universidad de Malaga, Spain

Extract

In this paper, we study the structure of certain infinite-dimensional alternative algebras admitting an inner product and an involution. These algebras, called alter-native H*-algebras in the sequel, are the alternative analogues of the H*-algebras of Ambrose [1].

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Ambrose, W.. Structure theorems for a special class of Banach-algebras. Trans. Amer. Math. Soc. 57 (1945), 364386.CrossRefGoogle Scholar
[2] Bonsall, F. F. and Duxcan, J.. Complete normed algebras Ergeb. Math. Grenzgeb. 80 (1973).CrossRefGoogle Scholar
[3] Dieudonn, J.é. Eléments d'analyse, tome III (Gauthier-Villars, 1968).Google Scholar
[4] Dixmier, J.. Les algèbles d'opérateurs dans l'espace Hilbertien. (Gauthier-Villars, 1969).Google Scholar
[5] Kleinfeld, E.. Alternative nil rings. Ann. of Math. (2) 66 (1957), 395399.CrossRefGoogle Scholar
[6] Riesz, F. and Nagy, B. Sz.. Leçons d'analyse fonctionelle (Gauthier-Villars, Paris, 1968).Google Scholar
[7] Scraper, R. D.. An Introduction to Nonassociative Algebras (Academic Press, 1966).Google Scholar
[8] Viola, C.Devapakkiam. Hilbert space methods in the theory of Jordan algebras I. Math. Proc. Cambridge Philos. Soc. 78 (1975), 293300.Google Scholar