Published online by Cambridge University Press: 24 October 2008
Detailed measurements have been made of the superconducting transition temperatures and critical magnetic fields of the tin isotopes of mass 116, 120 and 124. The transition temperature varies with isotopic mass according to the law Tc ∞ M−n, with n = 0·462 ± 0·014, a result very similar to that already found in mercury. The critical field curves of isotopes 116 and 124 are geometrically similar, in the sense that both many be represented by the same equation, Hc/Ho = f(T/Tc), with the same ratio Ho/Tc for both. It is deduced that the electronic specific heat in normal tin varies only slowly, if at all, with isotopic mass. The variation of Tc and Ho with M is very close to that predicted by Fröhlich and Bardeen.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.