Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T17:01:53.492Z Has data issue: false hasContentIssue false

Torsion in semicomplete nilpotent groups

Published online by Cambridge University Press:  24 October 2008

Thomas A. Fournelle
Affiliation:
University of Alabama, University, AL 35486, U.S.A.

Extract

Let Aut G and Inn G denote the group of all automorphisms of the group G and the subgroup of all inner automorphisms of G, respectively. A group G is said to be complete if it has trivial centre and Aut G = Inn G. Examples of such groups abound and they have been the object of study for many years. Following Heineken (8) we call a group G semicomplete if Aut G = Inn G.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Fournelle, T. A.Nilpotent groups without periodic automorphisms. Bull. London Math. Soc. (in the press).Google Scholar
(2)Fournelle, T. A.Outer automorphisms of nilpotent groups. Bull. London Math. Soc. 13 (1981), 129132.CrossRefGoogle Scholar
(3)Fournelle, T. A.Elementary abelian p-groups as automorphism groups of infinite groups II. Houston J. Math. 6, (1980), 269276.Google Scholar
(4)Fournelle, T. A.An example of a pseudo complete nilpotent group. Houston J. Math. 9, (1983), 2933.Google Scholar
(5)Fuchs, L.Infinite abelian groups (Academic Press, London, 1970 1973).Google Scholar
(6)Gaschtz, W.Kohomologische Trivialtt und ussere Automorphismen von p-Gruppen. Math. Z. 88 (1965), 432433.CrossRefGoogle Scholar
(7)Gaschtz, W.Nichtabelsche p-Gruppen besitzen ussere p-Automorphismen. J. Algebra 4 (1966), 12.CrossRefGoogle Scholar
(8)Heineken, H.Automorphism groups of torsionfree nilpotent groups of class 2. Sympos. Math. 17, (1976), 235250.Google Scholar
(9)Hilton, P. J. and Stammbach, U.A course in homological algebra (Springer-Verlag, 1971).CrossRefGoogle Scholar
(10)Robinson, D. J. S. Outer automorphisms of torsion-free nilpotent groups. (Unpublished.)Google Scholar
(11)Robinson, D. J. S.A contribution to the theory of groups with finitely many automorphisms. Proc. London Math. Soc. (3) 35 (1977), 3554.Google Scholar
(12)Robinson, D. J. S.Finiteness conditions and generalized soluble groups (Springer-Verlag, 1972).CrossRefGoogle Scholar
(13)Schmid, P.Normal p-subgroups in the group of outer automorphisms of a finite p-group. Math. Z. 147 (1976), 271277.CrossRefGoogle Scholar
(14)Stammbach, U.Homology in group theory. Lecture Notes in Mathematics, vol. 359 (Springer-Verlag, 1973).CrossRefGoogle Scholar
(15)Stoneheweb, S. E. and Gupta, N. D.Outer automorphisms of finitely generated nilpotent groups. Arch. Math. 31 (1978), 110.Google Scholar
(16)Warfield, R. B.Nilpotent groups. Lectures Notes in Mathematics, vol. 513 (Springer-Verlag, 1972).Google Scholar
(17)Webb, U. H. M.Outer automorphisms of some finitely generated nilpotent groups I. J. London Math. Soc. (2), 21 (1980), 216244.CrossRefGoogle Scholar
(18)Zalesskii, , nilpotent, A. E. Ap-group possesses an outer automorphism. Dokl. Akad. Nauk SSSR 196 (1971), 751754; Soviet Math. Dokl. 12 (1971), 227230.Google Scholar
(19)Zalesskii, A. E.An example of a torsion-free nilpotent group having no outer automorphisms. Mat. Zametki 11 (1972), 2126; Math. Notes 11 (1972), 1619.Google Scholar