Article contents
Towards affinoid Duflo’s theorem I: twisted differential operators
Published online by Cambridge University Press: 13 April 2021
Abstract
For a commutative ring R, we define the notions of deformed Picard algebroids and deformed twisted differential operators on a smooth, separated, locally of finite type R-scheme and prove these are in a natural bijection. We then define the pullback of a sheaf of twisted differential operators that reduces to the classical definition when R = ℂ. Finally, for modules over twisted differential operators, we prove a theorem for the descent under a locally trivial torsor.
MSC classification
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 172 , Issue 3 , May 2022 , pp. 531 - 561
- Copyright
- © The Author(s), 2021. Published by Cambridge University Press on behalf of Cambridge Philosophical Society
References
Ardakov, K. and Wadsley, S.. On irreducible representation of compact p-adic analytic groups. Ann. of Math. 178: (2013), 453–557.CrossRefGoogle Scholar
Ardakov, K. and Wadsley, S.. Verma modules for Iwasawa algebras are faithful. Münster J. of Math. 7(1), (2014), 5–26.Google Scholar
Beilinson, A. and Bernstein, J.. Localisation de -modules. C. R. Acad. Sci. Paris 292, (1981), 15–18.Google Scholar
Beilinson, A. and Bernstein, J.. A proof of Jantzen’s conjectures. Adv. Soviet Math 16, (1993), 1–50.Google Scholar
Bergh, M.. Some generalities on G-equivariant quasi-coherent 𝒪X and 𝒟X-modules. https://hardy.uhasselt.be/personal/vdbergh/Publications/Geq.pdf.Google Scholar
Borho, W. and Brylinski, J. L.. Differential operators on homogeneous spaces. III. Invent. Math. 80(1), (1985).CrossRefGoogle Scholar
Duflo, M.. Sur la classification des ideaux primitifs dans l’alg‘ebre enveloppante d’une alg‘ebre de Lie semisimple. Ann. of Math. 105, (1977), 107–120.CrossRefGoogle Scholar
Milicic, D.. Localisation and representation theory of reductive lie groups. http://www.math.utah.edu/milicic/Eprints/book.pdf.Google Scholar
Rinehart, G.. Differential forms on general commutative algebras. Trans. Amer. Math. Soc. 108(2), (1963), 195–222.CrossRefGoogle Scholar
Stanciu, I.. Towards affinoid Duflo’s theorem II: the localisation mechanism and a geometric proof of classical Duflo’s theorem. Submitted, (2020).Google Scholar
Stanciu, I.. Towards affinoid Duflo’s theorem III: primitive ideals in affinoid enveloping algebras. Submitted, (2020).CrossRefGoogle Scholar
The Stacks Project Authors. Stacks Project. https://stacks.math.columbia.edu/, (2018).Google Scholar
Wang, J.. Introduction to 𝒟-modules and representation theory. Master’s thesis., University of Cambridge (2012).Google Scholar
Wisbauer, R.. Coalgebras and bialgebras, Lectures given at Cario University and the American University in Cairo. (2004) http://www.math.uni-duesseldoff.de/wisbanes/cairo-lecpdf.Google Scholar
- 2
- Cited by