Article contents
Turán theorems for unavoidable patterns
Published online by Cambridge University Press: 26 April 2021
Abstract
We prove Turán-type theorems for two related Ramsey problems raised by Bollobás and by Fox and Sudakov. First, for t ≥ 3, we show that any two-colouring of the complete graph on n vertices that is δ-far from being monochromatic contains an unavoidable t-colouring when δ ≫ n−1/t, where an unavoidable t-colouring is any two-colouring of a clique of order 2t in which one colour forms either a clique of order t or two disjoint cliques of order t. Next, for t ≥ 3, we show that any tournament on n vertices that is δ-far from being transitive contains an unavoidable t-tournament when δ ≫ n−1/[t/2], where an unavoidable t-tournament is the blow-up of a cyclic triangle obtained by replacing each vertex of the triangle by a transitive tournament of order t. Conditional on a well-known conjecture about bipartite Turán numbers, both our results are sharp up to implied constants and hence determine the order of magnitude of the corresponding off-diagonal Ramsey numbers.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 172 , Issue 2 , March 2022 , pp. 423 - 442
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
- Copyright
- © The Author(s), 2021. Published by Cambridge University Press on behalf of Cambridge Philosophical Society
References
- 3
- Cited by