Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T06:51:56.205Z Has data issue: false hasContentIssue false

Uniform annihilation of local cohomology and of Koszul homology

Published online by Cambridge University Press:  24 October 2008

K. Raghavan
Affiliation:
Purdue University, West Lafayette, IN 47907, U.S.A.

Extract

Let R be a ring (all rings considered here are commutative with identity and Noetherian), M a finitely generated R-module, and I an ideal of R. The jth local cohomology module of M with support in I is defined by

In this paper, we prove a uniform version of a theorem of Brodmann about annihilation of local cohomology modules. As a corollary of this, we deduce a generalization of a theorem of Hochster and Huneke about uniform annihilation of Koszul homology.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Brodmann, M.. Einige Ergebnisse aus der lokalen Kohomologietheorie und ihre Anwendung. Osnabrücker Schriften zur Math. no. 5 (1983).Google Scholar
[2[Dieudonné, J. and Grothendieck, A.. Éléments de géometrie algébrique. Inst. Hautes Études Sci. Publ. Math. 24 (1965).Google Scholar
[3]Faltings, G.. Über die Annulatoren lokaler Kohomologiegruppen. Arch. Math. (Basel) 30 (1978), 473476.CrossRefGoogle Scholar
[4]Faltings, G.. Der Endlichkeitssatz der lokalen Kohomologie. Math. Ann. 255 (1981), 4556.CrossRefGoogle Scholar
[5]Faltings, G.. Über lokale Kohomologiegruppen hoher Ordnung. J. Reine Angew. Math. 313 (1980), 4351.Google Scholar
[6]Grothendieck, A.. Local Cohomology (notes by R. Hartshorne). Lecture Notes in Math. vol 41 (Springer-Verlag, 1967).Google Scholar
[7]Hartshorne, R.. Cohomological dimension of algebraic varieties. Ann. of Math. (2) 88 (1968), 403450.CrossRefGoogle Scholar
[8]Hochster, M. and Huneke, C.. Tight closure, invariant theory, and the Briançon–Skoda theorem. J. Amer. Math. Soc. 3 (1990), 31116.Google Scholar
[9]Hochster, M. and Huneke, C.. Infinite integral extensions and big Cohen–Macaulay algebras Ann. of Math. (2) 135 (1992), 5389.CrossRefGoogle Scholar
[10]Huneke, C.. Uniform bounds in Noetherian rings. Invent. Math. 107 (1992), 203223.CrossRefGoogle Scholar
[11]Huneke, C. and Lyubeznik, G.. On the vanishing of local cohomology modules. Invent. Math. 102 (1990), 7393.CrossRefGoogle Scholar
[12]Huneke, C. and Sharp, R.. Bass numbers of local cohomology modules of a regular local ring of positive characteristic. Trans. Amer. Math. Soc., to appear.Google Scholar
[13]Raghavan, K.. Uniform annihilation of local cohomology and powers of ideals generated by quadratic sequences. Ph.D. Thesis, Purdue University (1991).Google Scholar