Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Anderssen, R. S.
1970.
The character of non-uniqueness in the conductivity modelling problem for the earth.
pure and applied geophysics,
Vol. 80,
Issue. 1,
p.
238.
Anger, Gottfried
1970.
Eindeutigkeitssätze und Approximationssätze für Potentiale. I.
Mathematische Nachrichten,
Vol. 43,
Issue. 1-6,
p.
123.
BOTT, M.H.P.
1973.
Geophysics.
Vol. 13,
Issue. ,
p.
133.
Prilepko, Alekseij Ivanovič
1974.
Über Existenz und Eindeutigkeit von Lösungen inverser Probleme der Potentialtheorie.
Mathematische Nachrichten,
Vol. 63,
Issue. 1,
p.
135.
Burkhard, Norman
and
Jackson, David D.
1976.
Application of stabilized linear inverse theory to gravity data.
Journal of Geophysical Research,
Vol. 81,
Issue. 8,
p.
1513.
1978.
Marine Gravity.
Vol. 22,
Issue. ,
p.
295.
CHAVEZ, R. E.
and
GARLAND, G. D.
1983.
ON THE APPLICATION OF INVERSE THEORY TO GRAVITY INTERPRETATION*.
Geophysical Prospecting,
Vol. 31,
Issue. 1,
p.
119.
Strakhov, V. N.
and
Brodsky, M. A.
1986.
On the Uniqueness of the Inverse Logarithmic Potential Problem.
SIAM Journal on Applied Mathematics,
Vol. 46,
Issue. 2,
p.
324.
Moharir, P. S.
1990.
Inversion of potential field data.
Journal of Earth System Science,
Vol. 99,
Issue. 4,
p.
473.
Brodsky, M
and
Panakhov, E
1990.
Concerning a priori estimates of the solution of the inverse logarithmic potential problem.
Inverse Problems,
Vol. 6,
Issue. 3,
p.
321.
Ohe, Takashi
and
Ohnaka, Kohzaburo
1994.
A precise estimation method for locations in an inverse logarithmic potential problem for point mass models.
Applied Mathematical Modelling,
Vol. 18,
Issue. 8,
p.
446.
Vasco, D. W.
1997.
Groups, algebras, and the non-linearity of geophysical inverse problems.
Geophysical Journal International,
Vol. 131,
Issue. 1,
p.
9.
Barbosa, Valéria C. F.
Silva, João B. C.
and
Medeiros, Walter E.
2002.
Practical applications of uniqueness theorems in gravimetry: Part II—Pragmatic incorporation of concrete geologic information.
GEOPHYSICS,
Vol. 67,
Issue. 3,
p.
795.
Parker, Robert L.
2007.
The Theory of Ideal Bodies for Gravity Interpretation.
Geophysical Journal of the Royal Astronomical Society,
Vol. 42,
Issue. 2,
p.
315.
Chappell, A. R.
and
Kusznir, N. J.
2008.
Three-dimensional gravity inversion for Moho depth at rifted continental margins incorporating a lithosphere thermal gravity anomaly correction.
Geophysical Journal International,
Vol. 174,
Issue. 1,
p.
1.
Ardalan, Alireza A.
Zamzam, Davood
and
Karimi, Roohollah
2011.
An alternative method for density variation modeling of the crust based on 3-D gravity inversion.
Journal of Applied Geophysics,
Vol. 75,
Issue. 2,
p.
355.
Silva, João B. C.
Santos, Darcicléa F.
and
Garabito, German
2014.
Harmonic and biharmonic biases in potential field inversion.
GEOPHYSICS,
Vol. 79,
Issue. 1,
p.
G15.
Chauhan, Mahak Singh
Fedi, Maurizio
and
Sen, Mrinal K.
2017.
Ambiguity for inversion of scaling function: A comparison with gravity inversion.
p.
1729.
2017.
Gravity and Magnetics Complete Session.
p.
1708.
Kunnummal, Priyesh
Anand, S.P.
Haritha, C.
and
Rama Rao, P.
2018.
Moho depth variations over the Maldive Ridge and adjoining Arabian and Central Indian Basins, Western Indian Ocean, from three dimensional inversion of gravity anomalies.
Journal of Asian Earth Sciences,
Vol. 156,
Issue. ,
p.
316.