Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T18:13:16.569Z Has data issue: false hasContentIssue false

Vector bundles and complex polarizations

Published online by Cambridge University Press:  24 October 2008

Nicholas Woodhouse
Affiliation:
Wadham College, Oxford

Abstract

This paper discusses the local and global geometry of coisotropic foliations and complex polarizations on symplectic manifolds and draws attention to an analogy between coisotropic foliations and Hermitian vector bundles, in which connections and characteristic classes are modelled by objects in symplectic geometry.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Guillemin, V. and Sternberg, S.Geometric asymptotics, Mathematical Surveys, vol. 14 (American Mathematical Society, Providence, Rhode Island, 1977).CrossRefGoogle Scholar
(2)Guillemin, V. and Sternberg, S.Hadronic Journal 1 (1978), 132.Google Scholar
(3)Gunning, R. C.Lectures on Riemann surfaces, Princeton Mathematical Notes (Princeton University Press, Princeton, New Jersey, 1966).Google Scholar
(4)Hörmander, L.Acta Math. 127 (1971), 79183.CrossRefGoogle Scholar
(5)Kirillov, A. A.Elements of the theory of representations (Springer, Berlin, 1976).CrossRefGoogle Scholar
(6)Kostant, B. In Lectures in modern analysis, vol. III, ed. Taam, C. T., Lecture Notes in Mathematics, vol. 170 (Springer, Berlin, 1970).Google Scholar
(7)Kostant, B. In Géométrie symplectique et physique mathématique, ed. Souriau, J.-M. (CNRS, Paris, 1974).Google Scholar
(8)Rawnsley, J. H.Proc. Amer. Math. Soc. 73 (1979), 391–7.Google Scholar
(9)Śniatycki, J.Geometric quantization and quantum mechanics. Applied Mathematical Sciences, vol. 30 (Springer, New York, 1980).CrossRefGoogle Scholar
(10)Souriau, J.-M.Structure des systèmes dynamiques (Dunod, Paris, 1970).Google Scholar
(11)Sternberg, S.Proc. Nat. Acad. Sci. U.S.A. 74 (1977), 52535254.CrossRefGoogle Scholar
(12)Treves, F.Introduction to pseudodifferential and Fourier integral operators, vol. 2 (Plenum, New York, 1980).CrossRefGoogle Scholar
(13)Weinstein, A.Letters in Math. Phys. 2 (1978), 417420.CrossRefGoogle Scholar
(14)Woodhouse, N.Geometric quantization (Oxford University Press, 1980).Google Scholar