No CrossRef data available.
Article contents
Definability in the local structure of the ω-Turing degrees
Published online by Cambridge University Press: 21 February 2019
Abstract
This article continues the study of the definability in the local substructure $\mathcal{G}_{T,\omega}$ of the ω-Turing degrees, initiated in (Sariev and Ganchev 2014). We show that the class I of the intermediate degrees is definable in $\mathcal{G}_{T,\omega}$.
- Type
- Paper
- Information
- Copyright
- © Cambridge University Press 2019
References
Ganchev, H. and Sariev, A. C. (2015). Definability of jump classes in the local theory of the ω-enumeration degrees. Annuaire de Université de Sofia, Faculté de Mathématiques et Informatique 102 115–132.Google Scholar
Ganchev, H. and Soskova, M. I. (2012). The high/low hierarchy in the local structure of the ω-enumeration degrees. Annals of Pure and Applied Logic 163 (5) 547–566.CrossRefGoogle Scholar
Posner, D. B. and Robinson, R.W. (1981). Degrees joining to 0ʹ. Journal of Symbolic Logic 46 (4) 714–722.CrossRefGoogle Scholar
Sariev, A. C. and Ganchev, H. (2014). The ω-Turing degrees. Annals of Pure and Applied Logic 165 (9) 1512–1532.CrossRefGoogle Scholar
Soare, R. S. (1974). Automorphisms of the lattice of recursively enumerable sets. Bulletin of the American Mathematical Society 80 53–58.CrossRefGoogle Scholar
Soskov, I. N. (2007). The ω-enumeration degrees. Journal of Logic and Computation 17 (6) 1193–1214.CrossRefGoogle Scholar