Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T14:46:21.876Z Has data issue: false hasContentIssue false

Dilations and information flow axioms in categorical probability

Published online by Cambridge University Press:  25 October 2023

Tobias Fritz*
Affiliation:
University of Innsbruck, Innsbruck, Austria
Tomáš Gonda
Affiliation:
University of Innsbruck, Innsbruck, Austria
Nicholas Gauguin Houghton-Larsen
Affiliation:
Copenhagen, Denmark
Antonio Lorenzin
Affiliation:
University of Innsbruck, Innsbruck, Austria
Paolo Perrone
Affiliation:
University of Oxford, Oxford, UK
Dario Stein
Affiliation:
Radboud Universiteit Nijmegen, Nijmegen, Netherlands
*
Corresponding author: Tobias Fritz; Email: tobias.fritz@uibk.ac.at

Abstract

We study the positivity and causality axioms for Markov categories as properties of dilations and information flow and also develop variations thereof for arbitrary semicartesian monoidal categories. These help us show that being a positive Markov category is merely an additional property of a symmetric monoidal category (rather than extra structure). We also characterize the positivity of representable Markov categories and prove that causality implies positivity, but not conversely. Finally, we note that positivity fails for quasi-Borel spaces and interpret this failure as a privacy property of probabilistic name generation.

Type
Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aumann, R. J. (1961). Borel structures for function spaces. Illinois Journal of Mathematics 5 614630.CrossRefGoogle Scholar
Baez, J. and Stay, M. (2011). Physics, topology, logic and computation: a Rosetta Stone. In: New Structures for Physics, Lecture Notes in Physics, vol. 813, Heidelberg, Springer, 95–172. arXiv:0903.0340.Google Scholar
Baez, J. C. and Shulman, M. (2010). Lectures on n-categories and cohomology. In: Towards Higher Categories, The IMA Volumes in Mathematics and its Applications, vol. 152, New York, Springer, 1–68. Xiv:math/0608420.CrossRefGoogle Scholar
Barnum, H., Barrett, J., Leifer, M. and Wilce, A. (2007). Generalized no-broadcasting theorem. Physical Review Letters 99 240501. arXiv:0707.0620.CrossRefGoogle ScholarPubMed
Barnum, H., Caves, C. M., Fuchs, C. A., Jozsa, R. and Schumacher, B. (1996). Noncommuting mixed states cannot be broadcast. Physical Review Letters 76 28182821. arXiv:9511010.CrossRefGoogle ScholarPubMed
Chiribella, G. (2014). Dilation of states and processes in operational-probabilistic theories. In: Proceedings of the 11th Workshop on Quantum Physics and Logic, vol. 172, EPTCS, 1–14. Xiv:1412.8539.CrossRefGoogle Scholar
Chiribella, G., Mauro D’Ariano, G. and Perinotti, P. (2010). Probabilistic theories with purification. Physical Review A 81 062348. arXiv:0908.1583.CrossRefGoogle Scholar
Cho, K. and Jacobs, B. (2019). Disintegration and Bayesian inversion via string diagrams. Mathematical Structures in Computer Science 29 938971.CrossRefGoogle Scholar
Coumans, D. and Jacobs, B. (2013). Scalars, monads and categories. In: Quantum Physics and Linguistics: A Compositional, Diagrammatic Discourse, Oxford Academic.Google Scholar
Faden, A. M. (1985). The existence of regular conditional probabilities: necessary and sufficient conditions. Annals of Probability 13 (1) 288298.CrossRefGoogle Scholar
Fritz, T. (2020). A synthetic approach to Markov kernels, conditional independence and theorems on sufficient statistics. Advances in Mathematics 370 107239.CrossRefGoogle Scholar
Fritz, T., Gonda, T., Perrone, P. and Rischel, E. F. (2023). Representable Markov categories and comparison of statistical experiments in categorical probability. Theoretical Computer Science, 113896.CrossRefGoogle Scholar
Fritz, T., Gonda, T. and Perrone, P. (2021). de Finetti’s theorem in categorical probability. Journal of Stochastic Analysis 2 (4). Xiv:2105.02639.CrossRefGoogle Scholar
Fritz, T. and Klingler, A. The d-separation criterion in categorical probability. Journal of Machine Learning Research 24 (46) 149. arXiv:2207.05740.Google Scholar
Fritz, T. and Liang, W. (2023). Free gs-monoidal categories and free Markov categories. Applied Categorical Structures 31 (2) Paper No. 21. arXiv:2204.02284.CrossRefGoogle Scholar
Fritz, T. and Rischel, E. F. (2020). Infinite products and zero-one laws in categorical probability. Compositionality 2 3.CrossRefGoogle Scholar
Fullwood, J. and Parzygnat, A. J. (2021). The information loss of a stochastic map. Entropy 23 (8) Paper No. 1021, 27. arXiv:2107.01975.Google Scholar
Heunen, C., Kammar, O., Staton, S. and Yang, H. (2017). A convenient category for higher-order probability theory. In: 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), [Piscataway], NJ, IEEE, 12. arXiv:1701.02547.Google Scholar
Houghton-Larsen, N. G. (2021). A Mathematical Framework for Causally Structured Dilations and its Relation to Quantum Self-Testing. Phd thesis, University of Copenhagen. arXiv:2103.02302.Google Scholar
Jacobs, B. (2016). Affine monads and side-effect-freeness. In: Proceedings of the International Workshop on Coalgebraic Methods in Computer Science, Lecture Notes in Computer Science, vol. 9608, Springer, 53–72. http://www.cs.ru.nl/B.Jacobs/PAPERS/side-effects.pdf CrossRefGoogle Scholar
Jacobs, B. (2021). Multinomial and hypergeometric distributions in Markov categories. In: Proceedings of the Thirty-Seventh Conference on the Mathematical Foundations of Programming Semantics (MFPS, Electronic Notes in Theoretical Computer Science, vol. 351, 98–115. arXiv:2112.14044.CrossRefGoogle Scholar
Kechris, A. S. (1995). Classical Descriptive Set Theory , Graduate Texts in Mathematics, vol. 156, New York, Springer-Verlag.Google Scholar
Moss, S. and Perrone, P. (2022). Probability monads with submonads of deterministic states. In: Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science, 1–13.CrossRefGoogle Scholar
Moss, S. and Perrone, P. (2023). A category-theoretic proof of the ergodic decomposition theorem. Ergodic Theory and Dynamical Systems, 127. arXiv:2207.07353.CrossRefGoogle Scholar
Parzygnat, A. J. (2020). Inverses, disintegrations, and Bayesian inversion in quantum Markov categories. arXiv:2001.08375.Google Scholar
Piedeleu, R. and Zanasi, F. An introduction to string diagrams for computer scientists. arXiv:2305.08768.Google Scholar
Pitts, A. and Stark, I. (1993). Observable properties of higher order functions that dynamically create local names, or: What’s new? In: Proceedings of MFCS 1993.CrossRefGoogle Scholar
Rosenthal, K. I. (1990). Quantales and Their Applications, Pitman Research Notes in Mathematics Series, vol. 234, Harlow, Longman Scientific & Technical; copublished in the United States with John Wiley & Sons, Inc., New York.Google Scholar
Sabok, M., Staton, S., Stein, D. and Wolman, M. (2021). Probabilistic programming semantics for name generation. In: Proceedings of the ACM on Programming Languages, vol. 5, ACM, 1–29. arXiv:2007.08638.CrossRefGoogle Scholar
Selby, J. H. and Coecke, B. (2017). Leaks: quantum, classical, intermediate, and more. arxiv.org/abs/1701.07404.CrossRefGoogle Scholar
Selby, J. H., Scandolo, C. M. and Coecke, B. (2021). Reconstructing quantum theory from diagrammatic postulates. Quantum 5 445. DOI: 10.22331/q-2021-04-28-445.CrossRefGoogle Scholar
St. Clere Smithe, T. Compositional active inference I: Bayesian lenses. statistical games. arXiv:2109.04461.Google Scholar
Stark, I. (1996). Categorical models for local names. LISP and Symbolic Computation 9 (1) 77107.CrossRefGoogle Scholar
Stein, D. (2021). Structural Foundations for Probabilistic Programming Languages. Phd thesis, University of Oxford. dario-stein.de/thesis.pdf.Google Scholar
Stein, D. and Staton, S. (2021). Compositional semantics for probabilistic programs with exact conditioning. In: Logic in Computer Science, IEEE. arXiv:2101.11351.Google Scholar