Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-13T14:14:26.946Z Has data issue: false hasContentIssue false

Proofs, denotational semantics and observational equivalences in Multiplicative Linear Logic

Published online by Cambridge University Press:  01 April 2007

MICHELE PAGANI*
Affiliation:
Dipartimento di Filosofia – Università Roma Tre, Via Ostiense 234 – 00146 Roma – Italy Email: pagani@uniroma3.it

Extract

We study full completeness and syntactical separability of MLL proof nets with the mix rule. The general method we use consists of first addressing these two questions in the less restrictive framework of proof structures, and then adapting the results to proof nets.

At the level of proof structures, we find a semantical characterisation of their interpretations in relational semantics, and define an observational equivalence that is proved to be the equivalence induced by cut elimination. Hence, we obtain a semantical characterisation (in coherent spaces) and an observational equivalence for the proof nets with the mix rule.

Type
Paper
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramsky, S. and Jagadeesan, R. (1994) Games and full completeness for multiplicative linear logic. Journal of Symbolic Logic 59 (2)543574.Google Scholar
Bellin, G. and de Wiele, J. V. (1995) Subnets of proof-nets in MLL. In: Girard, J.-Y., Lafont, Y. and Regnier, L. (eds.) Advances in Linear Logic. London Mathematical Society Lecture Note Series 222, Cambridge University Press.Google Scholar
Blute, R., Hamano, M. and Scott, P. (2005) Softness of Hypercoherences and MALL Full completeness. Annals of Pure and Applied Logic 131 163.Google Scholar
Böhm, C. (1968) Alcune proprietà delle forme β η-normali nel λ-K-calcolo. Pubblicazioni dell'IAC 696 119.Google Scholar
Danos, V. and Regnier, L. (1989) The structure of multiplicatives. Archive for Mathematical Logic 28 181203.Google Scholar
David, R. and Py, W. (2001) λμ-calculus and Böhm's theorem. Journal of Symbolic Logic 66 (1)407413.Google Scholar
Girard, J.-Y. (1987) Linear logic. Theoretical Computer Science 50 1102.CrossRefGoogle Scholar
Girard, J.-Y. (1991) A new constructive logic: classical logic. Mathematical Structures in Computer Science 1 (3)255296.Google Scholar
Girard, J.-Y. (1996) Proof-nets: the parallel syntax for proof-theory. In: Ursini and Agliano (eds.) Logic and Algebra, Marcel Dekker.Google Scholar
Girard, J.-Y. (2001) Locus solum: From the rules of logic to the logic of rules. Mathematical Structures in Computer Science 11 (3)301506.CrossRefGoogle Scholar
Hughes, D. and van Glabbeek, R. (2003) Proof nets for unit-free multiplicative-additive linear logic. In: Proceedings of the eighteenth annual symposium on Logic In Computer Science, IEEE Computer Society Press 1–10.Google Scholar
Joly, T. (2000) Codages, séparabilité et représentation de fonctions en λ-calcul simplement typé et dans d'autres systèmes de types, Thèse de doctorat, Université Paris VII.Google Scholar
Laurent, O. (2003) Polarized proof-nets and λμ-calculus. Theoretical Computer Science 290 (1)161188.Google Scholar
Mascari, G. and Pedicini, M. (1994) Head linear reduction and pure proof net extraction. Theoretical Computer Science 135 (1)111137.CrossRefGoogle Scholar
Matsuoka, S. (2005) Weak typed Böhm theorem on IMLL (submitted for publication). (Available at: http://arxiv.org/abs/cs.LO/0410030.)Google Scholar
Morris, J. H. (1968) λ-calculus models of programming languages, Ph.D. thesis, MIT.Google Scholar
Pagani, M. (2006) Proof nets and cliques: towards the understanding of analytical proofs, Ph.D. thesis, Università Roma Tre and Université Aix-Marseille II.Google Scholar
Retoré, C. (1997) A semantic characterisation of the correctness of a proof net. Mathematical Structures in Computer Science 7 (5)445452.CrossRefGoogle Scholar
Statman, R. (1983) Completeness, invariance and λ-definability. Journal of Symbolic Logic 17–26.Google Scholar
Tan, A. (1997) Full completeness for models of linear logic, Ph.D. thesis, University of Oxford.Google Scholar
Tortora de Falco, L. (2000) Réseaux, cohérence et expériences obsessionnelles. Thèse de doctorat, Université Paris VII. (Available at: http://www.logique.jussieu.fr/www.tortora/index.html.)Google Scholar
Tortora de Falco, L. (2003) Obsessional experiments for linear logic proof-nets. Mathematical Structures in Computer Science 13 799855.CrossRefGoogle Scholar