Published online by Cambridge University Press: 15 September 2021
Directed paths have been used by several authors to describe concurrent executions of a program. Spaces of directed paths in an appropriate state space contain executions with all possible legal schedulings. It is interesting to investigate whether one obtains different topological properties of such a space of executions if one restricts attention to schedulings with “nice” properties, e.g. involving synchronisations. This note shows that this is not the case, i.e. that one may operate with nice schedulings without inflicting any harm. Several of the results in this note had previously been obtained by Ziemiański in Ziemiański (2017. Applicable Algebra in Engineering, Communication and Computing28 497–525; 2020a. Journal of Applied and Computational Topology4 (1) 45–78). We attempt to make them accessible for a wider audience by giving an easier proof for these findings by an application of quite elementary results from algebraic topology; notably the nerve lemma.
The author thanks Uli Fahrenberg (École Polytechnique, Paris) and Krzysztof Ziemiański (Warsaw) for helpful conversations; Ziemiański particularly for pointing out several uncorrect statements in previous versions. Thanks are also due to the anonymous referees for several hints leading to improvements of the presentation.