Published online by Cambridge University Press: 12 November 2014
It is known that if K is a compact subset of the (separable complete) metric Urysohn space (${\mathbb U}$, d) and f is a Katětov function on the subspace K of (${\mathbb U}$, d), then there is z ∈ ${\mathbb U}$ such that d(z, x) = f(x) for all x ∈ K.
Answering a question of Normann, we show in this article that the supseparable bicomplete q-universal ultrahomogeneous T0-quasi-metric space (q${\mathbb U}$, D) recently discussed by the authors satisfies a similar property for Katětov function pairs on subsets that are compact in the associated metric space (q${\mathbb U}$, Ds).