Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T08:06:35.032Z Has data issue: false hasContentIssue false

Compact metric spaces as minimal-limit sets in domains of bottomed sequences

Published online by Cambridge University Press:  16 November 2004

HIDEKI TSUIKI
Affiliation:
Graduate School of Human and Environmental Studies, Kyoto University Email: tsuiki@i.h.kyoto-u.ac.jp

Abstract

Every compact metric space $X$ is homeomorphically embedded in an $\omega$-algebraic domain $D$ as the set of minimal limit (that is, non-finite) elements. Moreover, $X$ is a retract of the set $L(D)$ of all limit elements of $D$. Such a domain $D$ can be chosen so that it has property M and finite-branching, and the height of $L(D)$ is equal to the small inductive dimension of $X$. We also show that the small inductive dimension of $L(D)$ as a topological space is equal to the height of $L(D)$ for domains with property M. These results give a characterisation of the dimension of a space $X$ as the minimal height of $L(D)$ in which $X$ is embedded as the set of minimal elements. The domain in which we embed an $n$-dimensional compact metric space $X$ ($n \leq \infinity$) has a concrete structure in that it consists of finite/infinite sequences in $\{0,1,\bot\}$ with at most $n$ copies of $\bot$.

Type
Paper
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)