Article contents
Computing with continuous objects: a uniform co-inductive approach
Published online by Cambridge University Press: 19 August 2021
Abstract
A uniform approach to computing with infinite objects like real numbers, tuples of these, compacts sets and uniformly continuous maps is presented. In the work of Berger, it was shown how to extract certified algorithms working with the signed digit representation from constructive proofs. Berger and the present author generalised this approach to complete metric spaces and showed how to deal with compact sets. Here, we unify this work and lay the foundations for doing a similar thing for the much more comprehensive class of compact Hausdorff spaces occurring in applications. The approach is of the same computational power as Weihrauch’s Type-Two Theory of Effectivity.
Keywords
- Type
- Paper
- Information
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
- Copyright
- © The Author(s), 2021. Published by Cambridge University Press
Footnotes
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 731143.
References
- 1
- Cited by