Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-11T05:35:04.178Z Has data issue: false hasContentIssue false

Domains of commutative C*-subalgebras

Published online by Cambridge University Press:  21 March 2019

Chris Heunen
Affiliation:
School of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, UK
Bert Lindenhovius*
Affiliation:
Department of Computer Science, Tulane University, 6823 St. Charles Avenue, New Orleans, LA 70118, USA
*
*Corresponding author. Email: alindenh@tulane.edu

Abstract

A C*-algebra is determined to a great extent by the partial order of its commutative C*-subalgebras. We study order-theoretic properties of this directed-complete partially ordered (dcpo). Many properties coincide: the dcpo is, equivalently, algebraic, continuous, meet-continuous, atomistic, quasi-algebraic or quasi-continuous, if and only if the C*-algebra is scattered. For C*-algebras with enough projections, these properties are equivalent to finite-dimensionality. Approximately finite-dimensional elements of the dcpo correspond to Boolean subalgebras of the projections of the C*-algebra. Scattered C*-algebras are finitedimensional if and only if their dcpo is Lawson-scattered. General C*-algebras are finite-dimensional if and only if their dcpo is order-scattered.

Type
Paper
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramsky, S. and Jung, A. (1994). Domain theory. In: Handbook of Logic in Computer Science, vol. 3, Clarendon Press.Google Scholar
Beltrametti, E. and Cassinelli, G. (1981). The Logic of QuantumMechanics, Encyclopedia of Mathematics and Its Applications, Addison-Wesley Publishing Company.Google Scholar
Berberian, S. K. (1972). Baer *-Rings, Springer, second printing 2011.CrossRefGoogle Scholar
Bice, T. and Koszmider, P. (2017). C*-algebras with and without ≪-increasing approximate units. arXiv:1707.09287.Google Scholar
Bratteli, O. (1972). Inductive limits of finite dimensional C*-algebras. Transactions of the AmericanMathematical Society 171 195235.Google Scholar
Bratteli, O. (1974). Structure spaces of approximately finite-dimensional C*-algebras. Journal of Functional Analysis 16 192204.CrossRefGoogle Scholar
Connes, A. (1975). A factor not anti-isomorphic to itself. Annals of Mathematics, Second Series 101 (3) 536554.CrossRefGoogle Scholar
Conway, J. B. (1990). Functional Analysis, 2nd ed., Springer.Google Scholar
Dauns, J. (1972). Categorical W*-tensor product. Transactions of the American Mathematical Society 166 439456.Google Scholar
Döring, A. and Barbosa, R. S. (2012). Unsharp values, domains and topoi. In: Quantum Field Theory and Gravity, Springer, 6596.CrossRefGoogle Scholar
Döring, A. and Harding, J. (2016). Abelian subalgebras and the Jordan structure of von Neumann algebras. Houston Journal of Mathematics 42 (2) 559568.Google Scholar
Dvurečenskij, A. and Pulmannová, S. (2000). New Trends in Quantum Structures, Kluwer Academic Publishers.CrossRefGoogle Scholar
Ellis, D. B. and Ellis, R. (2013). Automorphisms and Equivalence Relations in Topological Dynamics, London Mathematical Society Lecture Notes, vol. 412, Cambridge University Press.Google Scholar
Fabian, M., Habala, P., Hjék, P., Santalucía, V. M., Pelant, J. and Zizler, V. (2001). Functional Analysis and Infinite-Dimensional Geometry, Springer.CrossRefGoogle Scholar
Farah, I. and Katsura, T. (2010). Nonseparable UHF algebra I: Dixmier’s problem. Advances in Mathematics 225 (3) 13991430.CrossRefGoogle Scholar
Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J .D., Mislove, M. W. and Scott, D. S. (2003). Continuous Lattices andDomains, Cambridge University Press.CrossRefGoogle Scholar
Grätzer, G., Koh, K. M. andMakkai, M. (1972). On the lattice of subalgebras of a Boolean algebra. Proceedings of the American Mathematical Society 36 8792.CrossRefGoogle Scholar
Hamhalter, J. (2011). Isomorphisms of ordered structures of abelian C*-subalgebras of C*-algebras. Journal of Mathematical Analysis and Applications 383 391399.CrossRefGoogle Scholar
Hamhalter, J. (2015). Dye’s theorem and Gleason’s theorem for AW*-algebras. Journal of Mathematical Analysis and Applications 422 (2) 11031115.CrossRefGoogle Scholar
Harding, J., Heunen, C., Lindenhovius, B. and Navara, M. (2017). Boolean subalgebras of orthoalgebras. arXiv:1711.03748.Google Scholar
Heunen, C. (2014a). The many classical faces of quantum structures. arXiv:1412.2117.Google Scholar
Heunen, C. (2014b). Piecewise Boolean algebras and their domains. In: ICALP, Lectures Notes in Computer Science, vol. 8573, Springer, 208219.Google Scholar
Heunen, C. and Lindenhovius, B. (2015). Domains of commutative C*-subalgebras. In: Logic in Computer Science, ACM/IEEE, 450461.CrossRefGoogle Scholar
Heunen, C. and Reyes, M. L. (2014). Active lattices determine AW*-algebras. Journal of Mathematical Analysis and Applications 416 289313.CrossRefGoogle Scholar
Huruya, T. (1978). A spectral characterization of a class of C*-algebras. Science Reports of Niigata University (Series A) 15 2124.Google Scholar
Jensen, H. E. (1977). Scattered C*-algebras. Mathematica Scandinavica 41 308314.CrossRefGoogle Scholar
Kadison, R. and Ringrose, J. (1983). Fundamentals of the Theory of Operator Algebra, Volume I: Elementary Theory, American Mathematical Society.Google Scholar
Kadison, R. and Ringrose, J. (1991). Fundamentals of the Theory of Operator Algebra, Volume III: Elementary Theory – An Exercise Approach, American Mathematical Society.Google Scholar
Kaplansky, I. (1951). Projections in Banach algebras. Annals of Mathematics, Second Series 53 (2) 235249.CrossRefGoogle Scholar
Kusuda, M. (2010). A characterization of scattered C*-algebras and its application to C*-crossed products. Journal of Operator Theory 63 (2) 417424.Google Scholar
Kusuda, M. (2012). C*-algebras in which every C*-subalgebra is AF. Quarterly Journal of Mathematics 63 (3) 675680.CrossRefGoogle Scholar
Landsman, N. (2017). Foundations of Quantum Theory, Springer.CrossRefGoogle Scholar
Lazar, A. (1982). AF algebras with a lattice of projections. Mathematica Scandinavica 50 135144.CrossRefGoogle Scholar
Lazar, A. (1983). AF algebras with directed sets of finite-dimensional C*-subalgebras. Transactions of the American Mathematical Society 275 (2) 709721.Google Scholar
Lin, H. (1989). The structure of quasi-multipliers of C*-algebras. Transactions of the American Mathematical Society 315 147172.Google Scholar
Lindenhovius, B. (2015). Classifying finite-dimensional C*-algebras by posets of their commutative C*-subalgebras. International Journal of Theoretical Physics 54 46154635.CrossRefGoogle Scholar
Lindenhovius, B. (2016). $\mathcal{C}(A)$. Phd thesis, Radboud University.Google Scholar
Mendivil, F. (1999). Function algebras and the lattices of compactifications. Proceedings of the AmericanMathematical Society 127 18631871.CrossRefGoogle Scholar
Navara, M. and Rogalewicz, V. (1991). The pasting construction for orthomodular posets. Mathematische Nachrichten 154 157168.CrossRefGoogle Scholar
Negrepontis, J. (1971). Duality in analysis from the point of view of triples. Journal of Algebra 19 (2) 228253.CrossRefGoogle Scholar
Saito, K. and Wright, J. D. M. (2015). Monotone Complete C*-algebras and Generic Dynamics, Springer.CrossRefGoogle Scholar
Semadeni, Z. (1971). Banach Spaces of Continuous Functions, Volume 1, PWN Polish Scientific Publishers.Google Scholar
Spitters, B. (2012). The space of measurement outcomes as a spectral invariant for non-commutative algebras. Foundations of Physics 42 896908.CrossRefGoogle Scholar
Stoltenberg-Hansen, V., Lindström, I. and Griffor, E. (2008). Mathematical Theory of Domains, Cambridge University Press.Google Scholar
Takesaki, M. (2000). Theory of Operator Algebra I, Springer.Google Scholar
Weaver, N. (2001). Mathematical Quantization, Chapman Hall/CRC.CrossRefGoogle Scholar
Wegge-Olsen, N. E. (1993). K-theory and C*-algebras, Oxford University Press.Google Scholar
Willard, S. (1970). General Topology, Addison-Wesley.Google Scholar