Published online by Cambridge University Press: 08 March 2022
We consider three monads on $\mathsf{Top}$ , the category of topological spaces, which formalize topological aspects of probability and possibility in categorical terms. The first one is the Hoare hyperspace monad H, which assigns to every space its space of closed subsets equipped with the lower Vietoris topology. The second one is the monad V of continuous valuations, also known as the extended probabilistic powerdomain. We construct both monads in a unified way in terms of double dualization. This reveals a close analogy between them and allows us to prove that the operation of taking the support of a continuous valuation is a morphism of monads $V \to H$ . In particular, this implies that every H-algebra (topological complete semilattice) is also a V-algebra. We show that V can be restricted to a submonad of $\tau$ -smooth probability measures on $\mathsf{Top}$ . By composing these morphisms of monads, we obtain that taking the supports of $\tau$ -smooth probability measures is also a morphism of monads.