Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T09:40:16.300Z Has data issue: false hasContentIssue false

A solution of the uniform word problem for ortholattices

Published online by Cambridge University Press:  27 May 2010

ANDREA MEINANDER*
Affiliation:
Department of Philosophy, University of Helsinki, P.O. box 24, FIN-00014, Helsinki, Finland Email: andrea.meinander@helsinki.fi

Abstract

The uniform word problem for finitely presented ortholattices is shown to be solvable through a method of terminating proof search. The axioms of ortholattices are all Harrop formulas, and thus can be expressed in natural deduction style as single succedent rules. A system of natural deduction style rules for orthologic is given as an extension of the system for lattices presented by Negri and von Plato. By considering formal derivations of atomic formulas from a finite number of given atomic formulas, it is shown that proof search is bounded, and thus that the question of derivability of any atomic formula from any finite set of given atomic formulas is decidable.

Type
Paper
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beltrametti, E. G. and Cassinelli, G. (1981) The logic of quantum mechanics, Encyclopedia of Mathematics and its Applications 15, Addison-Wesley.Google Scholar
Birkhoff, G. and von Neumann, J. (1936) The logic of quantum mechanics. Ann. of Math. 37 (4)823843.CrossRefGoogle Scholar
Burris, S. (1995) Polynomial time uniform word problems. Math. Logic Quart. 41 (2)173182.CrossRefGoogle Scholar
Burris, S. and Sankappanavar, H. P. (1981) A course in universal algebra, Graduate Texts in Mathematics 78, Springer-Verlag. (The Millenium Edition is available at: http://www.math.uwaterloo.ca/~snburris/htdocs/UALG/univ-algebra.pdf).CrossRefGoogle Scholar
Cosmadakis, S. S. (1988) The word and generator problems for lattices. Inform. and Comput. 77 (3)192217.CrossRefGoogle Scholar
Faggian, C. and Sambin, G. (1998) From basic logic to quantum logics with cut-elimination. In: Proceedings of the International Quantum Structures Association 1996 (Berlin). International Journal of Theoretical Physics 37 3137.CrossRefGoogle Scholar
Goldblatt, R. I. (1974) Semantic analysis of orthologic. J. Philos. Logic 3 (1–2)1935.CrossRefGoogle Scholar
Kalmbach, G. (1983) Orthomodular lattices, London Mathematical Society Monographs 18, Academic Press.Google Scholar
Mönting, J. S. (1981) Cut elimination and word problems for varieties of lattices. Algebra Universalis 12 (3)290321.CrossRefGoogle Scholar
Negri, S. and von Plato, J. (2002) Permutability of rules in lattice theory. Algebra Universalis 48 (4)473477.CrossRefGoogle Scholar
Negri, S. and von Plato, J. (2004) Proof systems for lattice theory. Mathematical Structures in Computer Science 14 (4)507526.CrossRefGoogle Scholar
Nishimura, H. (1994a) Proof theory for minimal quantum logic I. International Journal of Theoretical Physics 33 (1)103113.CrossRefGoogle Scholar
Nishimura, H. (1994b) Proof theory for minimal quantum logic II. International Journal of Theoretical Physics 33 (7)14271443.CrossRefGoogle Scholar
Skolem, T. (1920) Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit oder Beweisbarkeit mathematischer Sätze nebst einem Theoreme über dichte Mengen. Skrifter utgitt av Videnskapsselskapet i Kristiania I (4)136.Google Scholar
Skolem, T. (1970) Selected works in logic (edited by Fenstad, Jens Erik), Universitetsforlaget, Oslo.Google Scholar
Tamura, S. (1988) A Gentzen formulation without the cut rule for ortholattices. Kobe J. Math. 5 (1)133150.Google Scholar