No CrossRef data available.
Published online by Cambridge University Press: 27 October 2010
Wang tiles are unit-size squares with coloured edges. In this paper, we approach one aspect of the study of tiling computability: the quest for a universal tile set. Using a complex construction, based on Robinson's classical construction and its different modifications, we build a tile set (pronounced ayin) that almost always simulates any tile set. By way of Banach–Mazur games on tilings topological spaces, we prove that the set of -tilings that do not satisfy the universality condition is meagre in the set of -tilings.